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Summary of Main Results

In Code-Division Multiple-Access (CDMA), each transmitter is assigned a fixed, dis-

tinct s;-nature waveform which he uses to modulate his message in the same fashion as

in single-user communication. Then the information sent by each user can be demodu-

lated by correlating the received signal with each of the signature waveforms. This demo-

dulator, whose use is widespread in practice, is referred to as the conventional single-user

detector. As is v 1-known, when the channel output is corrupted by additive white

Gaussian noise, the conventional single-user detector minimizes the probability of elror in

a single-user channel, i.e., in the absence of interfering users. The fact that this is no

longer true in the multiple-access channel is the raison d'6tre of the area of multiuser

detection.

The performance of the conventional single-user dt actor is acceptable provided that

the energies of the received signals are not too dissimilar and that the signature

waveforms are designed so that their crosscorreLations are low enough (this depends on

the desired maximum number of simultaneous users). In practice, low crosscorrelations

are usually achieved employing Spread-Spectrum Pseudonoise sequences of long periodi-

city. If the received signal energies are indeed dissimilar, i.e., some users are very weak in

comparison to others, then the conventional single-user detector is unable to recover the

messages of the weak users reliably, even if the signature waveforms have very low

crosscorrelations. This is known as the near-far problem and is the main shortcoming of

currently operational Direct-Sequence Spread-Spectrum Multiple-Access systems, and of

recently proposed systems for future mobile radio communications.

ADue to the reduction of multiple-access capability and the increase of vulnerability

to hostile sources caused by the near-far problem, its solution or alleviation had been a
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target of researchers in the area for several years. Before the emergence of the solutions

based on multiuser detection developed by the Principal Investigator and his coworkers,

success had been very limited and, essentially, the only remedies available were power

control and the design of signals with even more stringent crosscorrelation properties.

Unfortunately, power control (i.e., the adaptive adjustment of transmitter power depend-

ing on its. location and of the received powers of the other users) dictates Oignificant

reductions in the transmitted powers of the strong users in order for the weaker users to

achieve reliable communication. Thus, power control can become self-defeating since it

actually decreases the overall multiple-access and antijamming capabilities of the system.

Furthermore, more and mor, complex signature waveforms lead to rapid increases in

system cost and bandwidth, and, as we have noted, do not eliminate the near-far prob-

lem. For these reasons, it can be seen why tile practical solution to the near-far problem

achieved in this project can be objectively considered a major breakthrough in the appli-

cation of signal processing techniques to Spread Spectrum communications.

The chief reason why multiuser detection did not develop until relatively recently

was the belief shaTed by many a worker in Spread-Spectrum that multiuser interference

is accurately modeled as a white Gaussian random process, and thus the conventional

detector is essentially optimum. It is not difficult to build an infinite population mul-

tiuser signal model which can be rigorously shown to be asymptotically Gaussian as the

individual amplitudes go to zero with the appropriate speed. Unfortunately, the number

of transmitters, signature waveforms, and power levels encountered in many practical

situations (e.g. in near-far environments) render the Gaussian approximation completely

useless. Therefore, it is useful to adopt a more refined viewpoint by taking the realities

of the medium into account, modeling them and exploiting them.

Prior to the start of this project, it had been shown by the Principal Investigator in

t
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'Minimum Probability of Error for Asynchronous Gaussian Multiple Access Channels,"

IEEE Trans. Information Theory, Jan. 1986 and "Optimum Multiuser Asymptotic

Efficien-y," IEEE Trans. Communications, Sep. 1986, that the near-far problem is not an

inherent flaw of Direct-Sequence Spread-Spectrum systems but rather of the simple con-

ventional correlation receiver. Those works developed optimum multiuser receivers,

4which consist of a front end of matched filters followed by a Viterbi-type algorithm

whose number of states is exponential in the number of users. Those receivers did not

suffer from the near-far problem. However, their implementation suffered from the bur-

den of the exponential complexity in the number of interferers and from the necessity to

estimate the received powers of each interferer.

The first breakthrough obtained in this project was the demonstration that for

4symbol-synchronous multiple-access channels a simple modification of the conventional

correlation receiver results in a system which does not exhibit the near-far problem, and

moreover provides optimum robustness against variations in the received strength of the

various transmissions. We called this new receiver the decorrelating detector as it corre-

lates the received signal against a linear combination of the waveforms assigned to the

active users, rather than only the waveform of the user of interest. The coefficients of

3 such a linear combination do not depend on the relative strengths of the transmitters

and can be precomputed in advance. Such linear combination is such that the detector

correlates with the projection of the signature waveform of the user of interest on the

subspace orthogonal to the subspace spanned by the interfering waveforms. Thus, the

decorrelating detector effectively tunes out the multiuser interference.

A very pleasant surprise was to demonstrate that the decorrelating detector

achieves optimum near-far resistance, i.e. the same level of protet 0ion against the near-far

problem as the optimum detector. This means that knowledge of the received energies is
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not required to combat the near-far problem and that a receiver whose complexity is

similar to that of the conventional detector achieves the same degree of robustness

against imbalances in the received energies as the optimum detector, with its exponential

complexity. Another attractive property of the decorrelating detector is that its bit-

error-rate is independent of the energies of the interfering transmitters--a most desirable

feature of a strategy designed to combat the near-far problem. The signal-to-noise

reduction due to the presence of interfering waveforms depends exclusively on the

(crosscorrelations of the) signature waveforms assigned to the transmitters, and not on

their relative power levels.

The next major result was the development of the decorrelating detector for the

asynchronous Code-Division multiple-access channel. In contrast to the solution

obtained for the synchronous channel, the asynchronous decorrelating detector is a linear

system with memory which can be implemented by transversal discrete-time filters.

Although the technical development and bit-error-rate analysis is complicated by an

order of magnitude in the asynchronous case, all the desirable features of the synchro-

nous decorrelating detector are retained: optimal near-far resistance, independence of

bit-error-rate to relative power levels, low complexity, and the fact that it is unnecessary

to know the received energies of the individual interferers at the receiver.

The main increase in complexity of the decorrelating detector with respect to that

of the conventional matched filter is the need to lock to the signal epochs of the interfer-

ing users, which can be accomplished by a bank of conventional single-u'.r synchroniza-

tion systems, or (in a promising direction for future research) by multiuser synchronizers.

We have also developed' low-complexity approximations to the decorrelating detec-

tor, which do not require the iterative or off-line computation of equalizer taps and per-

form promisingly for signature waveforms such as those used in currently operational
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Direct-Sequence Spread-Spectrum systems.

Although the decorrelating detector does not require knowledge of the powers of the

interfering transmitters, we have found a class of related linear receivers which makes

effective use of this information. Consequently, we have tackled the problem of ampli-

tude estimation in a multiuser white Gaussian channel and have suggested promising

techniques that can be brought to bear wii this problem. Those techniques can be

categorized as being based either on maximum-likelihood data recovery or on minimum

error-probability (i.e., Bayesian) data recovery. In each case, the most promising algo-

rithm is iterative with Gauss-Seidel iteration and the EM algorithm being proposed for

the ML and MEP approaches, respectively.

We bave also considered nonlinear receivers for multiuser channels. Here, each

rece'ver may only know the signature sequence of one of the transmitters and treats the

sum of all the other transmitted waveforms as noise, which is neither white nor Gaus-

sian. Particular emphasis is placed on asymptotically optimum detectors for each of the

following situations: weak interferers; CDMA signature waveforms with long spreading

codes; and low background GaussiaD noise level.

We have also looked at issues of computational complexity of combinatorial optimi-

zation problems arising in multiuser detection. We have shown that minimum bit-error-

rate demodulation of multiuser signals is an NP-complete problem in the number of

users, and hence polynomial algorithms are out of the question unless well-known prob-

lems such as the traveling-salesman and integer linear programming can also be solved in

polynomial time. Fortunately, however, minimum bit-error-rate receivers are not the

only ones that are resistant against the near-far problem. In particular, when. in lieu of

bit-error-rate, near-far resistance is the optimality criterion, then the complexity of the

optimal receiver (the drk 'orrelating detector) is linear in the number of interferers.

I
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When Spread-Spectrum signaling is coupled to random-access protocols to provide

some degree of flow control, it is necessary to do away with the conventional collision

channel model, whereby several simultaneous transmissions result in the destruction of

all transmitted messages. We have proposed a new model, the multipacket channel,

which is general enough to encompass random-access channels with ODIMA or with cap-

ture (which are especially relevant in near-far situations). More significantly, we have

found the maximum throughput achievable by the ALOHA algorithm in the general mul-

tipacket channel: 1) in the open-loop version of the ALOHA algorithm, i.e., with fixed

fretransmission probabilities, the throughput is equal to the limit of the expected number

of successfully received packets per slot as the backlog goes to infinity, and 2) the

throughput of closed-loop ALOHA, wher, he retransmission probabilities are a function

of the channel oucomes, is equal to the maximum over v of the expected number of suc-

cessfully received packets per slot when the nu-ber of attempted transmissions is a Pois-

son random variable with mean v.

Our research efforts under the sponsorship of this ARO contract have ,'lso been

directed to the investigation of related issues in the CDMA optical channe, vhich is

receiving considerable attention both in commercial and military applicatioi, for fiber-

optic and free-space photonic channels. The emphasis has been in the development of

formulas for the bit-error-rate of simple single-user receivers, which can be computed

efficiently for large numbes of users. A by-product of this analysis is the determination

of the optimum detection threshold as a function of the number of users--a problem that

finds no counterpart in the conventional Caussian channel. We have achieved the first

exact analysis of a single-user optical matched filter detector in the presence of an arbi-

trary number of asynchronous transmitters. The comparison of our exact analysis with

popular approximations on user synchronism or on the distribution of the multiple-access

I°
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interference points to severe shortcomings of those approximations, as the optimal thres-

hold is consistently underestimated, leading to an error probability which is an order of

magnitude above the one that can be obtained by a simple adjustment of the threshold

as a function of the number of active transmitters.

I

I
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Stability Properties of Slotted Aloha with
Multipacket Reception Capability

SYLVIE GHEZ, STUDENT MEMBER, IEEE, SERGIO VERDU, MEMBER, IEEE, AND STUART C. SCHWARTZ, SENIOR MEMBER, IEEE

Abstract-The stability of the Aloha random access algorithm in an Previous studies of some of the aforementioned systems [9],
infinite-user slotted channel with multipacket reception capability is [121-[18] where some of the packets involved in a collision may
considered. This channel is a generalization of the usual collision channel, be correctly received have shown that the performances arc
in that it allows the correct rceptian of one or more packets involved in a noticeably improved with respect to slotted Aloha. However. even
collision. The number of successfully received packets in each slot is in those special cases, no precise stability result is available, either
modeled as a random variable which depends exclusively on the number because finite population networks with no buffer space were
of simultaneous attempted transmissions. This general model includes as considered, or because the Poisson approximation of channel
special cases channels with capture, noise, and code division multiplexing. traffic was used for infinite population networks. In [ 19] (see also
It is shown by means of drift analysis that the channel backlog Markov [20]), upper and lower bounds are derived for the capacity of a
chain is ergodic if the packet arrival rate is less than the expected number multiple access channel where all packets are correctly received if
of packets successfully received In a collision of n as n goes to infinity, the collision size does not exceed a fixed threshold and otherwise
Finally, the properties of the backlog in the nonergodicity region are all packets are destroyed.
examined. In this paper, we consider a generalization of the collision

channel, where the receiver can demodulate several packets
simultaneously. It is assumed that the number of correctly

I. INTRODUCTION demodulated packets is a random variable, which, given the
number of packets simultaneously transmitted, is independent of

NE of the main problems in random access communications the backlog and of the number of previous retransmission
is the determination of the maximum stable throughput. In attempts. This random variable can take any integer value

particular, an important result is that the Aloha protocol is between zero and t, collision size. Thus. the channel is described
unstable [1]-[31 in an infinite-user slotted collision channel by a matrix of conditional probabilities (e k) where Enk is the
where a transmission is successful only if no other users attempt probability that k packets are correctly demodulated given that
transmissions simultaneously. Several strategies have been de- there were n simultaneous transmissions. We analyze the usual
signed to stabilize this channel, such as collision resolution Aloha algorithm with the multipacket reception capability just
algorithms (see [4], for example) where transmissions are described. Users are synchronized so that transmissions take place
deferred until the current conflict is solved, and more recently, within one slot, and at the end of each slot, stations that did
Aloha-type strategies using decentralized control, where the transmit a packet learn whether or not their transmission was
retransmission probability is updated according to previous succekfil Tnsuc-c.. i,, O," .... Ioggeud packets are retransmitted
channei outcomes. It has been shown [5]-[71 that the maximum in each subsequent slot with probability p, 0 < p _< I. It turns out
stable throughput achievable by such Aloha-type strategies with that multipacket reception capability can stabilize Aloha. Our
decentralized control is e- 1. main result states that the maximum stable throughput is equal to

However, the collision channel model does not hold in many the limit of the average number of packets correctly received in
important practical multiuser communication systems [8J-[21] collisions of size n when n goes to infinity. To show this, we
because simultaneous transmission of several packets does not model the channel backlog as a Markov chain, and then study its
necessarily result in the destruction of all the transmitted properties by using some simple drift analysis techniques.
information. For instance, the capture phenomenon is common in The last part of this paper is a study of the properties of the
local area radio networks [12]-[15]; if the power of one of the backlog in the nonergodicity region. Unlike the backlog Markov
received packets is sufficiently large compared to the power of the chain for slotted Aloha which is always transient [11, the backlog
other packets involved in a collision, then the strongest packet can for our model does in general have a null recurrence region of
be correctly decoded, while the other packets are lost. Other positive length, which depends on the matrix (ek) and on the
examples are multiple-access channels where several users retransmission probability p. However, transience in the nonergo-
transmit simultaneously in the same frequency band, and a dicity region can be ensured for a large class of systems, and in
multiuser detector demodulates the information transmitted by all particular for channels where the number of successful simultane-
active users (e.g., [8]-f11]). Although those systems do not ous transmissions is bounded.
necessarily require a random access protocol, it is sometimes
useful to exercise some flow control through such a protocol so as H. MULTIPAcKET REcEPTION MODEL
to limit the maximum number of simultaneous transmitters, in
order to bound the multiuser receiver complexity and guarantee Let Ak be the number of new packets arriving during time slot
lower bit-error rates. k. Assume that (Ak)kao are i.i.d. random variables with

probability distribution:

Manuscript received July 23. 1987; revised January 8. 1988. Paper P[Ak=n]=) (na0)
recommended by Past Associate Editor A. Ephremides. This work was =X
supported in part by the Office of Naval Research under Contract N00014-87-
k-0054 and by the Army Research Office under Contract DAAL03-87-k- such that the mean arrival rate X = So- I nX,, is finite. New
0062. packets are transmitted with probability one at the beginning of

The authors are *ith the Department of Elecical Enginenng, Princeton te rsmittdwithraili
University, Princeton, tJ 0854. the first slot following their arrival.

IEEE Log Number 8821359. Given that n packets are being transmitted in one slot, we define

0018-9286/88/0700-0640$01.00 © 1988 IEEE
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forn> a , 0 k < n

Efk=P[k packets are correctly recevedjn are transmitted]. -

The multipacket reception properties of the channel are summa-
rized by the stochastic matrix

f2o 21 62 0 /
E= C . 1

which we refer to as the reception matrix of the channel. For
instance, the reception matrix for the usual collision channel is

0o -.--1~'1 00
0 TRANSMITTER

w fo a RECEIVER

L •Fig. 1. Pairwise transmissions with only one success (3-3).

while for a system with capture it has the form
0 1 in the sense that transmitter T,, sends packets only to receiver R,,,

and R, is only interested in the packets sent by T, (see Fig. 1).
Assume also that each receiver can only detect correctly the
packet sent by the closest transmitter (in particular, this is the case

, 1- X1 if there is perfect capture, see Example 3 below). The successes of
transmissions occurring at the same time are independent, so that

L J ~ fo rn ;,- 2

where x,, is the probability of capture given that the collision size (n'
is n. The model studied in [19], [20] can be described by a En = p(n)k(l -p(n)) " -k

reception matrix of the form
where p(n) is the probability that any given transmitter is

0 1 successful in a collision of size n, which is equal to l/n if we
0 C0 assume that all locations are memoryless, i.e., independent from
-" .slot to slot. It follows that

0 0 1
1 0 C.=np(n)= I

1 0 0 and the maximum throughput is 1. More generally, if because of
L-1 I channel noise, the message of the closest transmitter is received

our model correctly with probability ,, (in other words et = x), then the
u Note that by sour o e ors. throughput is equal to e. The assumption that the locations of the

but also background noise to be a source of errors. stations are memoryless is equivalent to assuming that they move
Denote by X,, the number of backlogged packets in the system infinitely fast If this simplifying assumption is dropped, then the

at the beginning of slot n. The discrete-time process (X,,ao 1s number of successes depends not only on the current number of
easily seen to be a homogeneous Markov chain. We define thenubroscessdpnsntolynthcretnmerf
system to be stable if (X,),o n s rocan. We d the retransmissions, but also on the previous history of retransmis-
The average number of packets correctly received in colhsions of sions, and thus the problem is no longer encompassed by our
size avisented nubyr of packe Worrey rcivin n os in o multipacket reception model. In Fig. 2, the result of a simulation

iresult. k shows that for moderate speeds, the actual throughput is well

Theorem I: If C,, has a limit C = lim,. C,,, then' the system approximated by the foregoing analysis.

is stable for all arrival distributions such that X < C and is 2) Frequency Hopping Random Access Channel: Consider a

unstable for X > C. This also holds if C is infinite. if lim,.* C, finite population of N users transmitting by frequency hopping, as

= + co, then the system is always stable. in (11], [221. For each packet he wants to transmit, a user selects

The proof is given in Section III. In the remainder of this with equal probability one frequency in a fixed set of q

section, we use Theorem I to analyze several simple random frequencies. A packet is correctly received iff no other packet is
access channels that fall within the scope of the multpacket transmitted on the same frequency during the same slot. We
reception channel compute (CeV,).,k,v, and C = limN-, Cv. If the users have

t) Mobile Users with Pairwise Transmissions. Consider an infinite buffer space, then C can be taken as a good approximation

infinite number of transmitters Tt, T2, "'" and an infinite for large N of the maximum stable throughput of the system,
positions in the plane are which is unknown. If the users have no buffer space, as is often

number of receivers R S, Rpse, whose posiions are pane are assumed, the back:og Markov chain is always ergodic, but even
id random variables. Suppose that transmissions are pairwise then, one should expect reasonable delays in large population

'This result holds under the assumption that the Markov chain of the problems only for arrival rates below C. The computation of the
number of backlogged packets is irreduci "  id apenodic (for details and reception matrix of this channel is a simple combinatorial problem

I sufficient conditions, see Section i1). of random assignment of objects to cells (e.g., see [23, App. A]).

-f. . . .; 2 . . .
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j + k constant, we get

N

0.8 -'N! ;

M.• ( ) n!(i - n- 1)!(N- i)!
Q. 0.6

DQ which can be simplified as

Nlcq=I N!0.2-qC= (-l!N )

00 I q(q- 1) '" (q-i+l)(q--i)N-i(l-1)
5 10 15 20 25 30

VELOCITY tO get the final result
Fig. 2. Throughput as a function of velocity for mobile users with pairwise

transmissions. Stations moving in a square region: velocity units: percent- CN=N 1 I
age of square side traveled in one slot. Retransmission probability set to
0.1.

b) N > q: In this case, there can be at best q - I successes
in a colliion of size N. The same method applies to get the

Denote by T1, T2, ", TN the users, all involved in the collision, following probabilities:
and also denote by S the set of users whose packets are correctly
received. Two cases need to be considered. (_N"\q ' N- )k

a) 2 :N :sq:We have, for :j:5N EN.\j/s Kk) .k,.0

PIS=(T, T2, q ,(}] (1) q

and the following decomposition: 0NJ=O (qsj<N)

P[{ TI, T2, "TI) 9 S1 =P[S={( T1, T2 , ...~ I~H Tresulting in the same expected number of successeb as before

+P U {{T 1, T , TO } 1 Sl T
Ik-J~I

Now we let the population size N go to infinity and we apply
easily yields the desired expression our result. If we let N grow to infinity while keeping q constant,

we have limN. Cv = 0, so the system is always unstable. On the
V-j other hand, if we let N go to infinity while keeping q equal to a

P[S= {T,, T2, "", T}] (- l)k fixed percentage of the population size, i.e., N/q constant, then
limNv. CNq = + o, and the system is always stable. It is easilyk-o 'shown that to get a finite maximum stable throughput, q has to

N- TS 2 grow as N/in N.
k P[{T, Tz, "", Tk+j} _ S} (2) 3) Mobile Radio Network with Capture: Consider an infinite

number of Users independently and uniformly distributed in a
where only one term is left to compute circle of radius R, whose positions are independent from slot to

slot. Users transmit packets to a common receiver located at the
center of the network. Denote by Pj and Pz the received powers

P[{Ti, T2, ""I" Tk.1j} _ G ] of the strongest and the next to strongest packets involved in a
_0(9- 1) ... (q-j-k+ l)(q-j-k)Nt -J -k collision. Assume, as in [12]-[14], that the strongest packet is

qN (3) correctly received iff PI/P 2 > K (K being a system dependent
constant), and that all the other packets involved in the collision

for I <s j s N, 0 < k - N - j. Puffing (1), (2), and (3) together are not received successfully. Assume, moreover, that thefi N -ruiul( received power of a packet only depends on the distance r betweengives the result the sender and the receiver

N = constant ( P 2).

qi ( (4)\'k-0 
c

q(q-l1) .. qjk )qjk1-- 4 Then there will-be capture iff

for 1 < j s N. Notice in particular that N.N- I = 0. Let us now where 3 = K " is the capture paraineter, and r, r2 are the
compute the average number of packets correctly received in distances of the closest and the next to closest senders from the
collisions of size N, CN 7Y IjevN. By using (4) and summing at receiver.
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Denote by D the distance between a given user and the and for i ! 1
receiver. It is easily shown that the pdf of D is given by

f r)=2-r (Os sR .Pid-k= X . B1(j)X .J,. k (I :sk:5i)
pD(r)= 2 n -k

Given N users, denote by UN the closest from the receiver, and by [ +
DN its distance from tie receiver. Computing the cdf of Dv and Pa= Xo B +( + Bij) j + Z Bi(j)en+j.,
taking its derivative, we obtain J. ,,- J-o

pD(r)=_2 N -(0 r R). (5) 41+k Xk+n Z B1(j)+k ....n (k1). (8)
r N 1 R O. 0 1-0

t Given Dv = r, the other N - I users are uniformly distributed in Sufficient conditions for (Xn)no to be irreducible and aperi-
the annular region (r, R). So if-N users collide and Dv = r, Uv odic are as follows:
will be correctly received iff all the other users are in the annular * if 0 < p < 1:
region (f3r, R), which is empty if 3r > R. Therefore, if we denote
by X 0 (9a)

P,v(r)= P(captureIN collide, DN=r] (N> 2)

we have XO+., Xnnn<1 (9b)(4R2-3 2r2 ]N-1 R

PAO R2 -r a hr5 (6) CIo#l (9c)

0 if r2 ' R ifp =1:
0

Thus, the probability of capture in a collision of N (N -> 2) is Xo# 0 (9a)

evi = P(r)PoN(r) dr. X0+Z Xntnn<I (9b)
n.i

Using (5) and (6), and with the change of variable x =13/R, this for all i>_ 1, ejo # 1. (9d)
is easily computed These are only sufficient conditions, but they hold for almost all

nontrivial systems. For example, if (9b) does not hold, then zero
= 2Nx(l -32x2)N-i . is an absorbhig btale, since the left-hand side of (9b) is equal to
• ,oP0. Also, (9c) simply means that the successful reception of a

single packet in the absence of other active users is possible.
It follows that C =1/32 is the maximum stable throughput. Assume, for instance, that 0 < p < I and that the arrivals are
Notice, in particular, that for 3 = 1 (perfect capture), we have C Poisson distributed. Then we only have to assume (9c), and (9b) is
= I and for13 "- oo (no capture), we have C - 0. true unless there is perfect reception, that is c,, = I for all n a 1,

Under certain conditions, the performances of Aloha in the in which case the system would of course always be btable. TheI multipacket channel can be improved by varying the retransmis- case p = 1 gives rise to a number of pathological situations,
sion probability as a function of the channel history, and a hence, the much stronger condition (9d). It generally turns out
maximum stable throughput of supx.o ex,, C,/n!x" can b that either (9d) is not necessary or the stability region of the
reached (see (31]). system is obvious. For instance, it is clear from the 'transition

probabilities that slotted Aloha with p = I is always unstable. In
III. ERGODIcJTY REGION any case, it is assumed in what follows that (Xn),,o is irreducible

and aperiodic.
The number of backlogged packets in the system at time n, Proof of Theorem 1: The proof is based on drift analysis.

t (X,,),,o, is a homogeneous Markov chain whose one-step Recall that in general, the drift at state i (i >_ 0) is defined by
transition probability matrix can be computed as a function of p,
(Xk)kO, and E. Denoting by B(j) the probability of having j d1 =E[XI. -XjX,=ij.
retransmissions out of i backlogged packets

If we denote by Z, the number of successful transmissions in slot

B(j () pt, ) (7) 1' we have

we get and therefore

P0o=XO+ Z X,,. d=-E lX=].(0

n.I Now if R, is the number of retransmissions in slot t, we get

Po= o Xk.nek.nn (k_>l) P[Sj=kjX,=i, At=n, Rj] = ,n+j.k

n.o for 0 i, 0 " k 5 n + j and with the convention that o =
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C0  0. Thus, Also, if L is an upper bound for C,,

E[ZtjXj=i, A,=n, R,=j=C,., Mc M

and o . j.o 2)<2

E[SdX= i] = X , Bi(j)C,+J. (11) for i big enough because (13) holds, which takes care of the first

n-J.. ~term in (14) and ends the proof of Lemma 1.
Putting together (12) and Lemmas A and 1, we get that 1) if

The value of the drifts for our model follows from (10) and (11) lim... C, =  +co, then lim.= d, = -o, and (X,,),,,o is
ergodic;'and 2) if lim,,.. C,, = C < + Qo, then limj. d, = X -
C, and (X,),,o is ergodic for X < C. If X > C, we can apply

d,=\- X, Bi(j)C,,+,. (12) Lemma B and conclude that (X,),,o is not ergodic provided that
-o J.o Kaplan's condition ii) holds. This is the purpose of Lemma 2,

which is the last step in the proof of Theorem 1.
The idea of the proof is to compute lim. d, which will turn out Lemma 2: If for all n ? 1, C,, < L for some L E (0, ao), then
to be a very simple expression, and then apply the results of [3] Kaplan's condition holds: there exists a constant B, an integer N,
and 124] to determine the ergodicity region of (X,,),,>o. Let us first and a real c E [0, I] such that
recall the two results that will be used in the sequel.

Lemma A (Pakes 124]): Let (X,,),,:o be an irreducible and 0- PO 1> -B(I-O) all i>N, 0 E [c, 1].
aperiodic Markov chain having as state space the nonnegative j
integers, denote by (Pi1 ) its transition probability matrix, and by
di its drift at state i. Then if for all i Idil < co, and if lim sup, di Proof of Lemma 2: According to 125], it is enough to show
< 0, (X,,),,,o is ergodic. that the downward part of the drift, defined as

Lemma B (Kaplan [31): Under the assumptions of Lemma A,
if for some integer N -> 0 and some constants B > 0, c E [0, 11
the following two conditions hold, then (X,,),,.o is not ergodic: D(i) - kPk

i) for all i > N, d, > 0 k I
ii) for all i -?. N, all 0 E [c, I], 0 - jPo - -B(I - 0).
From (!2), it can be seen that Idi! is finite since is bounded below. From the transition probabilities (8), we get

jdI~sX+ X,, B,(j)C,,+ 1_-2X+ip. D(i)= - k X, B1Dn~~
ni-O J.0 k-I n-0 ,-k

Next, the drift limit is given by the following lemma. which can also be put in the form
Lemma 1: If C,, has a limit C, finite or not, then lim1. ,,-0

Proof of Lemma 1: We consider two separate cases D(i)=- Bi(j) X, kXe,,nn+k
depending on whether C is finite. j. n-o k-1
.l) C= +o . 1) C +Co.from which it follows that
Fix A > 0 and pick r ! 0 such that X, # 0. There exists an

integer M such that for all n _ M, C,, > A. Fix such an M. Then
we have for i a: M D(i)>-V B,(j) XLE X ,, .1 >

X,, Bj(j)C,,,j>X, Bi(j)Cj+,>X,A BI(j)

n.0 j10 1-0 . 0i,,

which terminates the proof, since for any fixed M a: 0 Notice that in the proof of Theorem I (and this also holds for
Theorem 2 below), the exact expression (7) for B,(j) is never
used. The only requirements are that (B,(j))o-,,, is a probability

tim B(j)= 1. (13) distribution, arid that (13) holds. Therefore, our results are valid
for a larger class of retransmission policies than was first
assumed. For example, there could be K priority groups, each

2) C < + oo. with a different retransmission probability.
We have for i > M Although Theorem I is quite general, in many practical cases,

the reception rhatrix has a very simple structure and the stability
S region can be obtained with virtually no computations. This

Xt BAC)Ci+q-Cs B1(j) X, IC,,, --C[ happens for instance in radio networks with capture where all is
-0 1.0 ,,.o needed is the limit of the second column of the matrix, or also in

the simple case where above a certain collision size N, the
transmission is too garbled for the receiver to be able to decode 'IM). (14) anything correctly, so that C,, = 0 for n > N.

B(M+ ) n This last example is a particular case of a noteworthy feature of

Fix c, > 0. There exists M such that for all n > M, IC,, - C < Theorem 1, namely that the stability region does not depend on
e/2. Fix such an M. Then any finite number of rows of the reception matrix. In fact, any

number of modifications of the matrix that leaves lim,,-,. C
I W unchanged does not affect the stability region. Although this may

B(j) Z X,,C,-,j-C[<!. be surprising at first sight, it can be intuitively explained by the
J-M , ,-o fundamental instability of the collision channel: unless the
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receiver is perfect (all e,,, equal to 1), the backlog will eventually and therefore for all i > M
exceed any prefixed value with probability one, thus it is the limit
of C, that determines the stability region.

The stability region is also unchanged if the first transmission of X, B(Dj)C+,>(lim inf C,-) BI(j)
packets is delayed. If new packets are backlogged, that is, n.0 J-0 "f* J."
transmitted for the first time with probability p in each slot
following their arrival (this transmission rule appears in the which completes the proof since (13) holds.
literature as controlled-access or delayed first transmission), the b) If X > lim sup,., C,, then (X,),,o is not ergodic.
drifts become di = X -- S-. I B,(j )Cj for i L 1, and from Since X is finite, in this case lim sup,. C, is necessaiily finite.
Lemmas 1 and 2 the ergodicity region remains the same. Therefore, (C.),,,, is bounded and from Lemma 2, Kaplan's

If C, does not have a limit, Theorem I does not give the stable condition holds. Thus, it is enough to show that for all e > 0,
throughput of the system. Even though in almost all practical there exists N such that
cases, and indeed in all the examples of Section II, C, does have a
limit, it is conceptually interesting to examine the case when lim d,>X- lir sup C,,-e all iaN.
inf,. C,, # lim sup,., C,. It is worth pointing out that adding "

constraints as strong as the following on the reception matrix still From (15), we only need to show
does not imply that C, has a limit:

i) (eO),,>1 is nondecreasing X , B(j)C,,+j< lim sup C, +e all i>_N.
n=-0 J.0

ii) (,),k is nonincreasing for all k> I Since there exists M such that for all k ; M

iii) E,>kZE,,k.+ for n>2, lk:n-I Ck< liM sup C, +e

although the counterexamples we have been able to build are
somewhat contrived. Notice that conditions i) and ii) above imply then if L is an upper bound for C,, we have for i >_ M
that each column has a limit ak = liM,,ra. e,,(k _> 0), which is
very likely to happen in practice. In any case, Theorem 2 below M-1
still gives some information on the stability region, although the X,, Bj(j)C,+j<L Z B((j)+ lim sup C,+
exact result requires in general the complete knowledge of the ,-o i_0 C.0 "j m C

sequence (C,,),,,: 1. In fact, given any nonnegative numbers ot < 7
< 3, one can construct a reception matrix with nth row average from which the result follows, using (13). 0
C,, such that:

IV. BEHAVIOR OF THE BACKLOG MARKOV CHAIN IN THE
i) lim inf C =at NONERGODICITY REGION

In this section, we further investigate the properties of (X,,),,.o
ii) lim sup C,,=fl in the case X > C, assuming of course that (C,),, has a finite"M limit. It has been proved in [I] that the backlog Markov chain for

and such that the maximum stable throughput is -the usual slotted Aloha algorithm is transient, but this result

Theorem 2: The system is stable for X < lim inf,,.*, C,, and cannot be generalized to our model when X> C. We give below

unstable for X > lim sup,... C,. an example showing that (X,),,o can be null recurrent when the

Proof" mean arrival rate X belongs to an interval of positive length. The
boundary between the null recurrence and the transience regionsa) ifX < lim inf- .. , C,, then (Xlo,_C, is ergodic, generally depends in a rather complicated manner on both the

rf l a been C v + a then lim,,...R . C,, i reception matrix and the retransmission probability p. We give a
gsresult has already been proved, so assume that im inf,., C, 1s sufficient condition for (X,),,, to be transient when X > C, as

finite From Lemma A, it is enough lo prove that for all e > well astboundsrontheerecurrence>region
terwell as bounds on the recurrence region.

there exists N such that Consider the reception matrix defined by

di<X- lim inf C,,+e all i N. 1n-M, Eta,= (1 :5_k:5n)
n

Recall from (12) that we have

00 n
di=X- 7 X,, B(j)C,,+1 . (15) forn -> 1. Then C = Z. k/n 2 = (n + l)/2n, and C = 1/2.

R-0 j.o Using Lemmas C and D below, we show in [26] that X,, is

recurrent for X < R(p) and transient for X > R(p), where R(p)
So it is oaily needed to prove that for all e > 0 there exists N such is a function of the retransmission probability p and is given by
that

R(p)=+ l) In ( -p) (O<p<1)
XX, B(j)C,,+j> lim inf C,-e all i>N. P P
/-o /-0 R(1)= 1.

Now by definition there exists M such that for all k a M: It is easily seen that R(p) is an increasing function of p for p E
]0, If with extrema limp.o R(p) = 1/2 and limp-, R(p) = 1.

Ck> lim inf C,,-e Fig. 3 summarizes the behavior of X, for this example.
It is somehow surprising to see that in this case, as well as in all
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Sufficiency under the additional constraints yj > 0 and lim,. yj
= 0 has also been proved in [281. Also, the sufficiency parts of
both lemmas are an immediate consequence of [29, Theorems 5
and 61 together with the results in [30].

PProof of Theorem 3: We use Lemma D withy, = 1/(n +
1) e, 0 E ]0, 1[. We have

1/2- Pilyl-yi 0 (Y1-k-Yi)P1,1-k
Jk-I

+Z (y1.k-Y0)POj~k<O (16)

k-I

and

12 Rip, I iX
I ERGODIC tC.ULEI-  TRANSIENT ' (i+ 1)'1+ Z (Yt-k-Yi)Pi,,-k+(i+ 1)t +

NLL k-I

Fig. 3. Transience and ergodicity regions as a function of the retransmission
probability when ^k = l/n.

. . (yi+k-y0)P(,ik=D'(i)+U'(i) (17)

the other examples we have computed, the recurrence region k-1

becomes larger as p increases. Intuitively, the recurrence of X,
when X > C seems to be due to the fact that transitions from any where we have defined
state i to 0 (or to some fixed integer ko) are possible and that the
probability of such an event Pi0 (or Pk.), goes to zero slowly r _ _1 1
with i. It can be checked that these probabilities are increasing D'(i)_=_(i + 1)1 + e
functions of p when i is large enough. D'()=i+ 1)+ 1.~l-k)6  (i+ 1)0

Transience is ensured for X > C if the supremum of the
elements of the kth-column goes to zero faster than k2 . This o
condition holds for all the examples in Section II, as well as for •
many real life cases, due to the practical limitations on the n-o j-k
receiver capabilities. In particular, it is always verified if the
reception matrix has only a finite number of nonzero columns (or 1
equivalently, if the backlog Markov chain has uniformly bounded U,(i)=(i+ 1)1+e [ 1 1 ]
downwards transitions, as defined in [3]) which happens, for F (1+1+k)O (i+1)0
instance, if there is capture. Note that the proof of Theorem 3 +
below is of course valid for the conventional collision channel,
and in this case becomes somewhat simpler than the proof in [1). Xk. B,(J)En+k+.j,,. (18)

Theorem 3: If limk. k2 SUPak 6nk = 0, then (X.,),.%o is n-o J-o
transient for X > C.

Because of the complexity and lack of structure of the one-step The drift of X. at state i can be computed from the transition
transition probabilities (8), few results on the recurrence and probabilities (8)
transience of Markov chains can be applied to our model. Before
proving Theorem 3, let us introduce the following two criteria
from f27]. di= - kPi,,-k+ kPi, k=D(i)+ U(i) (19)

Lemma C: Let (X,).zo be an irreducible and aperiodic k-I k-I

Markov chain, having as state space the set of nonnegative
integers, and with one-step transition probability matrix P = where we have defined
(P,j). (X,),,o is recurrent if and only if there exists a sequence
(y ),,o such that

1) lim y"= +00 D(i)= - Z k X, Bj(j)En+jn.k
n-o k-I n-O ).k

2) for some integer N>0 yjP~y all i>N. 0 W
.0 U(i)=I k I X.k Bi(j)Ij,+k+.n. (20)

We will only use the sufficiency part, which has also been proved k-I a-0 ).0

in [24). The idea of the proof is to show that
Lemma D: With the same assumptions as in Lemma C,

(X,,),,o is transient if and only if there exists a sequence (Y,,).Zo lim [D'(i)+ U'(i)] - lim di (21)
such that i-c 1-**

1) (Yn),nzo is bounded and since it has been proved in Section III that lim., di -
C, we will be able to conclude that (X,,),,o is transient for X >

2) for some integer A1>0 y1P,1 - y all i2:N C.

I) !im [D'(i)+OD(i)]=0.
3) for some k>_N y<),., , YN-I. .



GHEZ et a/.: STABILITY PROPERTIES OF SLOTTED ALOHA 647

From (18) and i20) If limk-. k2
7- = 0, then lim,,.U /nEn. k2" k = 0. So we can

choose i large enough so that for n >-- tr + 1)/2, S'.I k 2Yk <

D'(i)+OD(i)=(i+ ) OL[(k4k) ne. Then

0~- i+~t 0  2,I~i~2- K i, I 
.fA o X.+.. =A.

,t. ~ Now if we choose i big enough so that for k > (Y + 3)/2, we have

which is more conveniently written as "k < elk', then

0 I

j D'(i)+OD(i)=(i+ ) 7 X, B(j) nx-(i).< ) ,, k (i- )
n-O J.I k-I

___ k i+i' Ok 1[(i :I ,_o1~ i -( ;,-- -

i+-J I- C'"*n " i'+1-k / +1 -(nl+-k)
1 0 1

This expression is nonnegative since ) 2;3 i! " Ik -/ k "
- .. +3)/2-

i~l-k i+1+-k - 1 -- 0 (1 <.k~i). By bounding the sum in the last equation by integrals, it can be
seen that it is upper bounded by a linear function of i.

2) lim.. [U'(i) + OU(i)] = 0.
Define "7k = SUp,,k Ck. Then From (18) and (20)

0oD,(i)+OD(')s(i+,) X,,n B,(j) k 0 _+1 , O 1
n-0 J-1 k- I U'(i)+OU(i)=S (i+ 1) i lk I + - 1-

L - 1j ".. l~k/ K, ,
i+ I -k / k 1 1] 7Yn+k0ii( + k , ,Xl+n B j),+k+

_<i~) x Lvil-=k: - i 1 *
n.o0 k- K 1+1 With a change of variable

That is o nD'()+O~i<xti)+,() (2) U'(i)+0U(i)=(i+ 1) Z Bjj) ZX,, F

J0 n-1 k-I

with, assuming for instance that i is odd -+ k
withassumngfo , ,+, 4, , ok

0 (iI)/2[(1+ \\e k 1i+l+k / 1+1

x,(i)=(i+l) X Yn 2 L +1-k) - '-TT j '"'k By using the following inequalities:
R-0 k-I K

0 _ O< 5 1 0+Ox<-+x O( +0)-- (x>0, 0<0<1)}
x2 (i)=(i+l) Y X i-k - i+1 J "I"

n-O k-(i 3)/2
we get

(23)

We show that xt(i) and x2(i) go to zero independently. Fix e > 0. 0 < U ' (i) + O U(i) O -- (i + 1) Bi(j)

Define for 0 < x < i the function 2 j
8 k2

p = L- L l . Xn T n+fn-k
XZ il X n-I k-I

It is easily proved that for each i Z:- 1, p,(x) is a positive +0(i+1) . BAY) 0 0 e

nondecreasing function of x. Also j.o .N+I k.+

p [4 (20-)-20] =A I N

2 +1--" Y, nX+ nX,.
n-I n-N.+1

where A is a positive constant depending only on 0. From (23)
Fix c- > 0. Choose N such that E- nX, < e/2, and then, N

(1 1)/2 A n+1+ 1)/2 being fixed, choose i large enough so tat 11(i + l)Z1Y n21X <
X,, k2p-(k)bl+keat-.spnttulehegitrgo e/2. 0

M -O k-.I M-0 k-I It should be clear at this point that unlike the ergodicity region,
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Sthe recurrence region depends in general on die elements of the REFFRENCFS

reception matrix (instead of only the row averages) and on the
retransmission probability p. For this reason, an exact expression iII w. A. Rosenkrantz and D. Towsley, -On the instability of the slotted
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Abstract-In this paper we focus on Iwo areas of communication messages by means of hardware switches, it allowed a step-by-
networi. design in which methods of control and optimization theory have step (node-by-node) forwarding of messages, thereby permitting
proven useful. . tese are the area of multiple access communication (for each node to switch messages by deciding when and where to
networks with shared links such as radio networks and local area transmit the messages in its buffer. In the last 20 years we have
networks) and the area of network routing (for networks with point-to- seen an avalanche of technologies (fast switching, time division
point interconnections). We review a few selected problems in each area multiplexing, local area networks, fiber optical networks, inte-
to show the role of the control concepts involved and we then proceed to grated services digital networks, etc.) and a proliferation of
identify other areas of communication network design in which the same operational public and private networks that put these technolo-
control theoretic and optimization methodology may be applicable and gies to test and challenged communication engineers. In addition,
useful. We do not survey the work done in this area, nor do we review they should challenge control engineers as well.
work in control areas whose methods are applicable In other communica- Without attempting a survey of this vast application area we
tion network problems. Instead, we attempt to bring to the attention of wish to promulgate the viewpoint that many (if not most) specific
the control systems community the numerous instances of problems sub-problems in the network design process are natural control
arising in the pure communicition network design process that can problems. In support of this thesis, we choose, first, to demon-
benefit from the attention and the capabilities of this community. strate how two major areas in communication networks (routing

and multiple access) have benefitted from the use of techniques
borrowed from what is traditionally perceived as control systems

I. INTRODUCTION methodology and, second, to mention additional areas that are
likely to benefit from the control systems community. As

OMMUNICATION networks are designed and built in order illustrated in this paper, the techniques that have proved uscful inC to share resources. If interconnecting systems and bandwidths communication networks include: dynamic programming (e.g.,
were available at no cost, then the solution to the problem of [2], [6], [81-[10], [22], [291, [38], [391, [471, [49], [54]); linear
communication would be to assign dedicated communication links programming (e.g., [50], [51]); constrained and iterative optimi-
(channels) of sufficient capacity to every pair of conceivable users zation (e.g., [51, [14], [16], [42]); Markov decision theory tools
to meet their needs. This not being the case, it is necessary to (e.g., [2], [261, [29], [38]); control of Markov chains (e.g., [I1,
multiplex the sources of communication traffic in order to [17], [18), [201, [40], [45]); stability analysis of stochastic
optimize various cost criteria. Frequently, this optimization is systems via Lyapunov methods (e.g., [31], [43]); sample path
dynamic and done on the basis of feedback that monitors the dominance (e.g., [2], [52]); and convergence of distributed and
evolution of the degree of utilization of the network resources. asynchronous algorithms (e.g., [6], 116], [42]).
Thus, we should expect a number of problems arising in The problem of routing is encountered in all and every network
communication network design to fit naturally in the framework that does not permit the source to reach the destination in a single
of control systems design. In this paper we wish to demonstrate transmission hop, but instead it must traverse a path of intermedi-
that indeed this is the case and to show how various control and ate links. By contrast, the problem of multiple access is
optimization methodologies have been used in the study of encountered primarily in those networks that permit the nodes to
communication networks. reach their destination directly in one hop by having to share the

In the beginning there was a single communication network, the same link with other transmitting nodes. In addition, the two
telephone network. It represented a multibillion dollar investment problems are fundamentally different in nature and, jointly, cover
and seemed to serve reasonably adequately the voice communica- considerable ground in the networking area. Finally, together they
tion needs. The explosive growth in data communication needs facilitate the identification of additional design issues and the
during the last 30 years built up the pressure for additional and extension of the applicability of suitable control methods. Thus,
alternative networking options. As a result, the notion of store- they represent "cornerstone" areas of network design.
and-forward switching (known also as message switching) was Routing can be studied either macroscopically or microscopi-
introduced in the early 1960's. This notion represented a cally. The macroscopic viewpoint considers basically a flow
breakthrough since it constituted a radical reversal of thinking model and determines the splitting of the flow in order to reach the
with respect to the circuit-switching process; namely, instead of destination in minimum time with efficient use of the network
securing an open, dedicated "pipe" for the transmission of resources. It is traditionally referred to as static routing. The

microscopic viewpoint dissects the flow process down to the
atomic level of the individual transmission unit, the message (a

Manuscript received September 13, 1988; revised December 27, 1988 and string of bits commonly referred to as packet), and determines the
April 24, 1989, Paper recommended by Associate Editor, T. L. Johnson. This path each message must follow at each of its hops through the
Nwrk was supporteand in partEcs8857689, the NationalOScience o undation under chrants network. It is traditionally referred to as dynamic routing. Both
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SFig. 2. Arbitrary network showing link lengths. Source is node ! and
destiwation is node 5.

...•-5 .... ).. network is not layered (such as that in Fig. 2), its shortest path can

vu u3  uu 0 be obtained by finding the shortest path in a layered network
Fig. I. Layered network showing link lengths. Source is node I in U1 and derived from the original one as specified in the Bellman-Ford

destination is node 5 in U.'. algorithm: the number of layers is equal to the number of nodes in
the original network, say N, each layer contains a copy of each of

conextof hard cbl reoures n lca ara ntwoks.Inthe N nodes, and there is a link connecting two nodes in
contxt f shredcabe reoures n loal reanetwrks Inconsecutive layers if such a link exists in the original network, in

Section III, we explore the main multiple access problems where addition, copies of the same node in consecutive stages are
control methods have been successfully applied. once yazr-eghln. Fg a culydrvdfo

Beth in the case of routing as well as in the case of multiple conncte by asn zeisrolenth ink (Fig. to se aidctiouall Did from
access we place the empnasis on the control techniques that have Fi.osig thi rue i i asy to -kse incionm ltha D of) the
been used. We then show how these techniques, sometimes with cs-og fnd nly~ ,i h iiu egho n

sliht odiicaion ca benatraly tansortd t oter robem path from i to the destination that uses at most k links (in the
aes ucght asdvic e-aitgation, fl naualytasowtcotol dthe be original network). Since no shortest path uses more than N -1

area suh a voie-dta nteratin, lowcontolandthelinks (link lengths are assumed nonnegative and, therefore, no
scheduling of messages and links. This is done in Section IV, path containing loops need be considered), the cost-to-go of node i

at layer 1, DN I (i) will indeed be the length of the shortest path
II. NETwoRK RouTING from node i to the destination. Thus, the Bellman-Ford algorithm

The problem of routing in communication networks is one that cnb omltda h trto
has received early attention and has experienced significant

j breakthroughs in the brief hiistory of the field of communication Dk(i) = min [Dk-I(J) + d,,] for k = 1, ... N- 1 (2.1)
~5 networks. It is one of the first problems that gained prominence as jEN(i)

a .usuit of the emergence of store-and-forward switching. It is also where dQij s the length of the link from i to j, N(i) is the set of
one in which analytical tools and available theories applied nicely nodes for which such a link exists and it is assumed that Do(i)
from the beginning. Qo if i is not the destination node, which corresponds to the

removal of all the nodes but the destination in the final layer (Fig.
A. Static Routing 1).

Given a network (a set of nodes connected by directed links) a *Contrary to what may appear at first glance there is a lot more.4 path connecting the source node to the destination node has to be to network routing than finding shortest paths. After all, the
selected from the set of all possible such paths.! In the simplest shortest path may not be the best path. The reason is that the real
formulation, the problem is one of finding the shortest path, i.e., a goal is to minimize the delay experienced in going from source to
length is assigned to each link and the optimization criterion is the destination, and the delay encountered in each link is usually a
total path length. This problem is one of the archetypical function of the amount of traffic carried by the link (as the link
combinatorial optimization problems (the solution can be found by becomes congested, it takes longer to go through it), which is
exhaustive enumeration of a finite set of possibilities-all possible referred to as the link flow and is quantified in packets (or
paths from source to destination). Among the many existing messages) per second. Then, assuming a given desired flow level
shortest path algorithms (see, e.g., [41]), the Bellman-Ford from source to destination, the problem is how to distribute it

-algorithm (1956) is of particular interest to our exposition, both among all the possible paths so as to minimize the total delay In
because it IS based on dynamic programming and because, as we contrast to the previous more elementary formulation of the
will see below, it easily lends itself to distributed asynchronous routing problem which led to the shortest path combinatorial
implementation. A natural choice to find the shortest path from optimization problem and-which corresponds to the special case in
source to destination in a layered network (i.e., one in which the which the link delays are indepndent of the flows, we now face a
nodes can be grouped in subsets U1, "". UMq such that the source continuous optimization problem which c'an be written as

Sand destination nodes belong to U1 and U'u, respectively, and Et
there are links only between nodes in adjacent layers Uk_ i andmiizeFx= D xn
U O) such as the one in Fig. 1, is the dynamic programming mnizF () n , x)
algorithm, where the shortest paths and distances (costs-to-go) of ~(lpIj
the nodes in layer Uk to the destination are computed based on the (
shortest paths and distances of the nodes in layer U+. If the subject to x E X= bx(1), ...(J)) ER ,

the case where there are several source-destinationl pairs cn ethenedto n)= > ~ n~ 22
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SHORTEST PATS which is a speciai case of the feasible-direction nonlinear
programming algorithm due to Frank and Wolfe [13]. The
convergence of the flow deviation method to the optimum routing

dxA x.t is rather slow because unfavorable paths tend to carry considera-
ble flow during many iterations unless the initial routing guess is

I FIRS TDRIAT- T1particularly fortuitous. Such a behavior can be improved by
S R reducing the flow alofig each nonminimum derivative path in

DI9STANCES accordance to the delay experienced in that path. This is the idea
Fig I Characterization of the solution to the minimum-delay routing of iterative routing algorithms based on gradient projection

problem. nonlinear optimization methods (e.g., [4]) in which the flow
decr6ase along a nonminimum derivative path is proportional to

where the set of all paths from source to destination is labeled { I, the difference between its length and that of the shortest path
.. , J}; x = (x(l), ""', x(J)) is the vector of unknown (according to the fin;t derivative of the delay function). If such a

nonnegative path flows which sum up to X, the desired flow from decrease would result in a negative flow, then the flow along that
source to destination; P(i,j) C {1, -- , J} is the subset of paths path is set to zero (hence, the projection to the set of feasible
that traverse link (i, j); and Dtu(x) is the portion of the overall flows).
delay contributed by the link from node i to node j when the flow We have seen that the problem of static network routing can be
it carries is equal to x. In order to characterize a global solution to formulated as a conceptually straightforward optimization prob-
the optimization over a convex set in (2.2), it is natural to restrict lem that admits well-known solutions in nonlinear programming.
attention to convex penalty functions. In practice, it is common What sets optimum routing in communication networks apart
that the incremental delay in a link grows with the amount of from other multicommodity flow problems arising in operations
traffic it carries and, therefore, it can be assumed that the research is the fact that the optimization is carried out in real
functions D;j are convex without affecting significantly the time, and often, in distributed fashion, where each node makes its
practical applicability of the results. own routing decisions based on local information. The review of

Now, the characterization of the solution to (2.2), x*, is centralized routing has revealed that the shortest path problem
straightforward. Since the feasible set X and the penalty function plays a central role in solving for the optimum routing regardless
F are convex, it is necessary and sufficient that the directional of whether the link congestion measures depend on the link flow
derivative of the penalty function be nonnegative when evaluated or not. Hence, we will start the exposition of distributed routing
at x* in the direction of any of the elements of X (e.g., [37]) algorithms by discussing the distributed version of the Bellman-

Ford shortest path algorithm.
0:5_lim F((l -a)x*+ax)-F(x*)] V E X (2. The Bellman-Ford updating equation in (2.1) suggests that the

atO algorithm is suited for decentralized operation because each node

which translates into can update its own estimate of distance to the destination (cost-to-
go) provided it receives from its neighbors their own estimates
[appearing on the right-hand side of (2.1)1. The feature that makes

Ox D x*(m) [x(n)-x*(n)] the study of the distributed Bellman-Ford algorithm interesting is
(0i) .P(iJ) nep(tQ) that it can run completely asynchronously, in the sense that the
J updating and communication times need not be coordinated and

= Z [x(n)-x(n)] dx.(n) for all E X (2.4) convergence can be guaranteed by simply assuming that updating
n-, and communication between nodes never cease, without any

requirements whatsoever on the rate of communication. The proof
where d.(n) = (i.)t(.) D .(mE.Ij) x*(m)) is the length of path of convergence is a nice illustration of the analysis of decentral-
n when the length of each link is equal to the derivative of its delay ized algorithms where the processors are allowed to perform their
evaluated at the set of flows x, and L (n) is the set of links used by computations and to communicate the corresponding results
path n. The solution to (2.4), x*, is the vector in Xthat minimizes completely independently of one another [5], [6]. The idea is to
its inner product with the vector of distances d,.. Thus, x* puts show that the estimates computed in the distributed asynchronous
all its weight on the smallest component(s) of d*.. The conclusion algorithm are always sandwiched by the estimates computed by
is that the optimum flow uses only shortest paths computed the centralized version of the algorithm when started at two
according to the derivative of the link delays. different initial conditions, and that both centraized estimates

This solution to the minimum-delay routing problem allows us converge to the trte distances to the destination node.
to check whether a given set of flows is optimum. Unfortunately, Those centralized estimates are denoted by Dk = (2)k(l), "",
it does not tell us how to find the optimum flows. Indeed, we face Dk(N)) and Dk = (Pk(1), " ", Pk(N)), and are the result of
the chicken-and-egg situation depicted in Fig. 3. The optimum the centralized Bellman-Ford iteration (2.1) when it is started
flows are obtained by solving a shortest path problem; but in order with initial conditions Do = (op, ..., c 0) and Do = (0, ." ",
to compute the link lengths it is necessary to know the optimum 0), respectively. (The destination node is assumed-to be the Nth
flows. Nevertheless, the foregoing characterization of the optimal node.) Define the operator [see (2.1)]
solution does suggest a possible iterative procedure to find the
optimum set of flows. Starting with a given set of flows x one can
compute the minimum derivative shortest paths for that flow, and BI[Dk] = mi [Dk(j) + dv]
hence, a new flow, x*(x) that is positive only along those shortest JEN(i)
paths. The process can then be repeated, until these is no -Dk+,(i) (2.6)
appreciable cost decrease. The region of convergence of such a if 1 5 i < N, and BN[Dk] = Dk(N). This operator is monotone
procedure can be improved by letting the new flow be a convex in the sense that if D s D* (i.e., if D(i) D*(i), i = 1, . -
combination of x and x*(x), i.e., N), then

Xk+ = (1 - Ctk)Xt+ akX*(Xk). Bi[D]-B,[D*]. (2.7)

This is the so-called flow deviation method of Fratta, Gerla, and
Kleii~rock [14], where 0 -otk< 1 is chosen to minimize The monotonicity of Bi implies that

F(( - Ctk)Xk + CtkX*(Xk)) Pk'<_DPk+ I S 1%+ 1I5 Dk (2.8)
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and, moreover, it is easy to show that for sufficiently large k q, C

P=AVI= k(2.9)

which is the vector of distances from each node to destination as
we saw in the discussion of the centralized algorithm.

In the asynchronous distributed version of the algorithm, it is (12 C
assumed.that each node i keeps at time t t 0 an estimate of its
distance to destination At(i), and an estimate of the distance from
each of its neighbors j E N(i) to destination A t(j ), which is Fig. 4. Queueing model of a node with one incoming link and two outgong
simply the latest estimate received from node j. In view of (2.8) links.
and (2.9), convergence of the algorithm will follow if we show
that for every index k, there exists a time tk > 0 such that for all t

j tthan the path flows. Tsitsiklis and Bertsekas [42] showed the
convergence of the distributed asynchronous implementation of

_ At k (2.10) gradient projection optimal routing algorithms provided the time

and for i = 1, ,N- 1 between consecutive broadcasts is small enough relative to the
speed at which the flows generated by the algorithm change. The

Pk(),5A(U)Dk(i) j E N(i). (2.11) approach for showing the stability of this algorithm is very
I different from the proof of convergence of the distributed

This is shown by induction. If k = 0, then (2. 10) and (2.11) hold Bellman-Ford algorithm where the monotonicity of the dynamic
as long as the initial estimates of the decentralized algorithm are programpming mapping implied that the estimates are closer and
nonnegative. Assuming that the induction hypothesis is true fork, closer to the solution regardless of the actual sequence of
the monotonicity of B implies that if t :> tk, then communication and computation times. The idea here is that if the

step size of the algorithm is small enough, then the flows change
_Dk+i(i)=B[pk].<Bi[Ai]<B[Dk]=Dk+ I(i). (2.12) so slowly with respect to the periods between communication

times that their evolution is very close to that of the centralized
But A,(i) is a piecewise constant function of time which only algorithm which uses the unique, true value of each link flow.
jumpts at the updating times of node i, at which times it takes the
value B. Dynamic Routing

At(i)=B1 [A~t] •  As mentioned earlier, there are two fundamentally different
philosophies to network routing: either viewing it as a "flow"

Therefore, we can write problem in which the traffic of messages is modeled as a
Ai) for t (i) (2.3) "macro"-commodity entering the network as a single entity

Dk+i)' )k+ i) frt ) 2 (static or quasi-static routing), or as an individualized-message

where t(i) is the smallest updating time of node i which is greater path-finding problem in which the traffic is broken down to its
than tk. Moreover, if wewait long enough after max, tk(i), not constituent elementary units (dynamic routing)-a dichotomy akin
only all the nodes will have carried out their first updates after tk to that of statistical/quantum mechanics in physics. Whereas the
but the result of those computations will have been communicated first approach leads to optimization problems where time plays no
to their neighbors because of the assumption that updating and role,, the essential ingredient of the second approach is the
communication occur infinitely often. Hence, there exists tk+ I a randomness of the time-evolution of the buffers in the network,
maxi tk(i) such that for ail t 2 t k +I and for all i and] thus placing dynamic routing within the sphere of stochastic

control.
A1U) =A,U) The most elementary instance of dynamic routing is die simple

queueing system shown in Fig. 4 which models a node with one
for some s : tk(j) (which depends on t, i, and i). Thus, it incoming link and two outgoing links. It simplifies considerably
follows from (2.13) that the dynamics of the message arrival process and of the service

time characteristics and ignores processing delay. Thus, the
Pk+I )SA 1(),k+l (I) i E N(i) i=1, "", N-1 arrival instants of messages over the incoming link are assumed to

constitute a Poisson process of constant rate X. Upon arrival each
completing the indluction proof and, therefore, the proof of message is put in the buffer of one of the two outgoing links. This
convergence of the distributed asynchronous Bellman-Ford al- action represents the "control." The buffers are assumed to have
gorithm. unlimited (infinite) capacity and the message lengths are assumed

When the link delays depend on the traffic flows, it is also to be random with exponential distribution (an obvious additional
possible to obtain the optimal routing that solves (2.2) in a simplification) with parameter g. The two outgoing links have
distributed asynchronou3 fashion. Gradient projection algorithms equal capacity of C bits/s. Thus, each link is modeled as a
are better suited for this task than the flow deviation method queueing system with exponential service time distribution with
because in the latter method a higher degree of synchronization is parameter AC. It is desired to characterize the optimal control
required in order for the nodes to use the same step size at each policy that minimizes the average total delay per message based
iteration. In the distributed asynchronous implementation of on the observations of the "state" of the system, namely the
gradient projection optimum routing algorithms, each node number of messages q, and q2 in the two buffers. The model, of
broadcasts from time to time the values of its outgoing flows to its course, assumes that the head-of-the-line message is dropped from
upstream neighbors, who in turn pass that information on to their the buffer as soon as the transmission of its last bit is completed.
upstream neighbors. In this way, the source keeps estimates at all This model, despite its simplicity, proved to be rather difficult
times of the link flows and can carry out the gradient projection to analyze. For details, see [10]; it is not important to repeat them
iteration autonomously based on those estimates. The first here. It should suffice to state that the main result, which simply
algorithm based on this idea was due to Gallager [161, who posed requires that upon arrival a message should join the shortest queue
an alternative formulation to (2.2), where the unknowns are the (with arbitrary decision in case the two queues have equal
fractions of flow routed to each outgoing link at each node, rather numbers of messages), was hardly surprising. Yet an intricate
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argument on the dynamic programming equation (DPE) was reflect the delay. By Little's result in queueing theory, we know
needed and there were some counter-intuitive side-results includ- that the average delay is proportional to the average number of
ing the relaxation of the Poisson assumption on the arrivals, and customers in the queue. Thus, c(r, a, s, s') can be taken to be
the fact that in the incomplete state i0formation case, the simply equal to (q, + q2). This MDP formulation - be extended
certainty-equivalent control (i.e., send the message to the to encompass more complicated queueing control problems.
expected shortest queue) need not be optimum unless both queues Let us return now to the general MDP. We need to specify the
have the same number of customers initially, notion of a control policy and the optimization criterion. Let us

The optimality of the send-to-shortest-queue (SS) policy in the denote by t, t2' ***, the state transitions that occur at instants tt,
complete state information case can be proved in a rather strong t2, " " . A policy r is a sequence of decision rules x , r 2, .",
sense. At all times, the sum (q, + q2) and maximum (max (qj, where r,, determines the choice of action at the transition time t,,.
q2 }) of the number of messages in both buffers are stochastically It can be viewed as a conditional distribution on the set of actions
minimized by the SS policy in the sense of the partial order parametrized by the past history of the process.
between random variables according to which the random variable The optimization criterion that corresponds to the practical case
X is stochastically smaller than Y if P[X <_ a] 2_ P[ Y : a] for of expected total delay is the long-run average expected cost;
all a. The proof of optimality can be obtained by the method of namely, if we denote by V(x, i, t) the expected cost incurred
forward induction [531, whereby the desired stochastic ordering under policy x, with initial state i, until time t we consider as the
between the queue sizes under the optimum and an arbitrary optimization criterion the value function
policy is shown to be preserved at each transition.

The problem formulation of [10] is one of many related ones V(r, i, t)
(see [81, [91, [221, [241, 133], [381, [54], [551) which are slightly V(r, i) _ lir inf
more complicated but share some fundamental characteristics
which, in fact, extend beyond the confines of the routing problem For technical reasons, however, that are well known to optimiza-
into the areas of priority assignment, resource allocation, and flow tion specialists, it is easier to establish optimality conditions if we
control. They are all Markovian decision process (MDP) prob- consider, instead, the so-called a-discounted cost, i.e.,
lems. In the sequel we will describe a fairly general MDP that
includes the dynamic routing problem as a special case. In fact, it
includes almost all of the queueing control problems that have Vol(K, i)= e-af dV(w, i, t).
been studied in-connection with communication network issues. t-o
We will then outline the solution hiethodologies that have been
used. These include basically: 1) the derivation of optimality The latter converges to the former as a - 1 under a variety of
conditions from the DPE associated with the corresponding MDP; stationarity conditions. For technical reasons that will become
2) the use of sample path stochastic dominance arguments, and apparent in the sequel, we will also consider the finite-horizon
finally; 3) the reformulation of the MDP as a linear program. We costs. These are defined in a similar fashion except that we let
should emphasize, lest the reader be unduly encouraged, that the time extend only to t,,, the instant of the nth transition. If we
problems in this area are sufficiently complex, so that only modest denote by V"(i) andV(i) (and also Va(i), V,(i) for the finite
results can be generally obtained despite involved arguments and horizon cases) the values of these cost functions when - is chosen
nontrivial machinery. Typically, these results characterize some optimally, we are led to the following DPE:
structural properties of the optimal policy. However, knowledge
of such structure is often sufficient to permit close approximation V1(1)= inf 1' [c(i, a, i')+j3(i, a, i') Va(i')]p(i' la, i)of the actual optimal policy by well-founded heuristics.

Let us recall briefly what an MDP is (for details, see [30]). We ,,CAj r
need a state description of the process to be controlled. Let S be its
state space. When in state s E S, a set A, of admissible control or
actions is specified. When action a E A, is applied, there is a
transition from state s to s' that is governed by the probability Vn+t(i)= inf F [c(i, a, i')+O(i, a, i')V (i')]p(i'la, i)
distribution p(s' Is, a), and which occurs after a random time r aGAI rj

which is exponentially distributed with distribution denoted by
t(71s, a, s'). Clearly, p and t together describe the stochastic where
dynamics of the process to be controlled. Finally, each transition
is accompanied by a cost penalty that we denote by c(r, s, a, s'). fl(s, a, s') e" dt(rjs, a, s')

The dynamic routing problem we considered before fits in this (
formulation easily. In that case, the state space is S = {0, 1, 2, 3,
... }2. An element s = (q,, q2) E S is simply the pair of values and
of the respective queue sizes. The set of actions A, is the same for
any state and consists of a and a2 where a is the action that c* a
assigns an arriving message to the buffer of link i. The c(s, a, s') 03 c(r, s, a, s')dt (-fs, a, s')
distribution p is of trivial form, in that the transitions are
deterministic. Assignment of an arrival to queue i augments q, by are the discount factor and cost values per transition, respectively.
one. Note, now, that in addition to the arrival instants, the The DPE is of fundamental importance in the study of MDP's
departure (or service completion) instants are important because because the value function V1 has the usually convenient
they induce state transitions as well. A departure from queue i properties of convexity, supermodularity, and other forms of
reduces qt by one. When a departure occurs there is no monotonicity that lead readily to sufficient conditions for optimal-
meaningful -control action that can be applied in this particular ity. The difficulty with the analysis of the DPE is that the i
problem. The exponential distribution i corresponds to times optimality conditions are heavily problem-dependent and often
between arrivals and/or departures. 2 Finally, the cost rate c must lead to explosively large numbers of cases to be verified

separately. This is especially true for MDP's that arise from
A slight modification of the model of transitions, called uniformi * queueing models. For this reason, and because of additional

u shgtminthatitintrodu moddummy transitionsoma ae nfoatio n is difficulties that arise when the state is on the boundaries (seeuseful in that it introduces dummy transitions from a state into itself, thus,
some situations which introduce nonessential complications can be handled [22, it became evident that alternative methods of solution were
without departure from this discrete transition time formulation, needed.
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One alternative method that has received attention recently and Here, xk denotes the state at tk (the instant of the kth transition), tk
which produced successful results in problems of queueing control represents that transition, and zk represents the control action at
(akin to the routing problem) is a probabilistic method called that transition. The transition G can represent an arrival or a
sample-path or stochastic dominance. This method bypasses departure as an increment of the state. The control Zk is
completely dealing with the value function. Instead, it focuses conveniently defined to enable (Zk = 1) or disable (zk = 0) a
directly on seeking the optimal policy. Let G be the class of transition. For example, in the routing model discussed at the
admissible policies. If we suspect that the optimal policy r has a beginning of the section, the state is equal to a two-dimensional
property.p, then we can proceed as follows in order to prove that vector of queue sizes, and the transition corresponding to sending
it actually does have that property. Let S be a subset of G, to an arriving message to the first queue would be represented by k
which we know the optimal policy belongs. We consider a subset = [10] 01 TIndeed, a variety of queueing control problems (in fact,
of policies S c S, all elements of which have the property p. For the vast majority of those that have been considered in connection
every x E S,,, we attempt to construct a policy i which with communication network problems) can be so represented.
outperforms w. If we succeed, we must conclude that the optimal Note that the crucial aspect of this state equation is the linear
policy belongs to Sp. In constructing i we often need to engage in dependence on the controls. Note also that usually the cost
a careful reorganization of the underlying probability space in function is linear in the state (since the usual cost criterion is the
order to align the sample paths properly, so that the comparison of expected delay which is coupled to the queue sizes, and hence the
the two policies can be made for every sample path. This state, by Little's result). Consequently, the cost is linear in the
procedure is full of risks and extreme care is required to avoid controls. The minimization of the cost over the set of control
faulty arguments. Note, also, that to apply this method usefully, trajectories is constrained since the state equation must be satisfied
we must have "guessed" the properties of the optimal policy and the state must always belong to an admissible set (typically, a
correctly. Thus, at best, it is a method to verify the validity of our set of vectors with integer-valued coordinates belonging to given
conclusions, rather than a method that leads us to the right ranges). Thus, the constraints are also linear in the controls, and
conclusions, the problem is easily formulated as an LP. There are, however,

Successful use of the stochastic dominance approach was made two points that require attention. First, the controls are integer-
in [52] and (501 where a problem that is dual to the problem of valued, i.e., zk E {0, 1}. Second, in the MDP the vectors k are
dynamic routing was studied. Specifically, in a two-server random and depend on past history.
queueing system in which the two servers have unequal service The first problem is taken care of in one of two ways: by
rates, we wish to determine whether and when the slower server construction or by use of a property of the constraint matrix of the
needs to be activated if we are interested in minimizing the usual linear program, called unimodularity. The construction method
total expected delay function. That the optimal policy has a involves using a noninteger optimum control whose quantized
threshold form (namely that the slower server must be activated version satisfies the MDP optimality conditions (see (38], [511 for
when the queue size exceeds a crucial value) was proven in [29] details). The use of unimodularity involves a well-known result in
via the DPE method. However, the alternative proof via the the theory of integer linear programming (e.g., [34]): if the
arguments of stochastic dominance was much simpler and led to a constraint matrix of an LP is integer-valued and totally unimodu-
generalization of the result to cases of nonexponential arrivals lar (i.e., each of its sub-determinants is + 1, - 1, or 0), then all
and/or service, that could not have been easily accomplished by the vertices of the feasible polytope are integer-valued. Therefore,
means of the DPE method. no further restrictions are needed to guarantee that the solution of

Another successful use of the stochastic dominance method has a conventional LP will result in the integer-valued optimal
been noted in [2]. In this case the problem of optimally choosing control. Fortunately, in many queueing problems of interest
which customer to serve next in a single queueing systein was (including the dynamic routing problem), the constraint matrix is
considered under the constraint that each customer must begin (or indeed totally unimodular.
terminate) service by an individually assigned random deadline or The second problem is easily taken care of by thinking of the
else it is dropped from the system. The cost criterion is then to zk's as functions from the sample space 0 to the action space.
minimize the expected number of lost customers. It was proven Thus, the cost criterion can be written as a functional on the
that scheduling the customer with shortest time to extinction underlying probability space.
minimizes this cost. Let Zk(ok) represent the control action at the kth transition,

Although these problems differ from routing, the model where Wk denotes the random "history" until the kth transition.
structures are quite similar, and it has been observed that, usually, We have
queueing control problems with such structural similarities can be
studied equally successfully. xk+ I (C ,+ 1) = xA(0 + Zk+ I ( ok + 1 ( k+

The third method, which was first used in [38] in the study of a Let S and Z be the set of admissible states and controls,
specific queueing control problem, and which has been broadly respectively. The B-discounted, n-step, expected cost under
extended recently in [51], is-the linear programming approach. policy z and initial condition x is given by
Almost any queueing control problem that can be formulated as a
MDP (therefore the problem of dynamic routing, as well) can be n-1
converted to an equivalent linear program (LP). The advantages JO(x, z)=E, 7 041(4)
of this conversion are that it is problem-independent and it leads k
occasionally to successful study of semi-Markov decision prob- k-a

lems as well. Furthermore, it facilitates considerably the charac- where
terization of optimal solution properties. Here is how this
equivalence can be demonstrated. L(zk)=crxk+drzk

Let us concentrate on an MDP under a finite-horizon, dis- (c and d denote constant column vectors). This is a cost functioncounted cost formulation) We shall consider a queueiag model(Caddentcosntolmvcor)Thsiacstfcin
with state dynamics given by that is adequately general. For example, in a pure resourceallocation problem without blocking or rejection of messages we

xkt=x + itZk+I, have d = 0, while in pure blocking problems we take c =0. The
state equation, after repeated iterations, yields

The reason that we cannot work directly with infinite horizons is the k
possibility of so-called duality gaps in linear programming theory with xk(wk)=x+ zj(wi) j(wj), k>0.

nfinite-dimensional variables. J - k
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Therefore, busy terminal locations. Dynamic channel sharing strategies
overcome this problem by allocating channel resources on an on-

.- (€ k "demand basis. Consistent with the overall spirit of this paper, our
J81(x, Z)=EX Z i3'|crxc zj +drzkj goal here is not to review this vast topic, but rather to demonstrate

k-o 0 p.1 how control theory can play a useful role in its study. Here we
wish to single out two multiple access strategies: random access

I-o k3 k +d and simultaneous transmission, which are broadly representative
cx+E Z Z d Zk" of dynamic channel sharing systems and in which control theoretic

k-1 j. iconcepts have played a pivotal role.
In random access communication, the conceptual allocation

But model is addressed without an effort to exploit the signaling
Ex(zk) = Zk(cj)pr(c~k)" degrees of freedom and the micro-structure of the transmitted

messages. For this purpose, a crude channel model is considered,
wk that achieves this separation of the "macro" from the "micro"

Hence problem. In simultaneous transmission systems, however, a more
refined viewpoint is adopted, by taking the realities of the medium

J (X, Z) + 
into account, modeling them, and exploiting them.

k-I Uk A. Random-Access

where yk(wk) is a known function that depends on Pr(wk), c, , The object of interest here is the so-called collision channel

and i3 k. Consequently, the MDP is equivalent to model, in which messages (called packets) require one time unit
(called slot) for transmission and are sent by a population of users
who are synchronized so that their slots coincide at the receiver,

min Z 'Yk(Wk)Zk(Wk) but are otherwise uncoordinated and unaware of which and how
'k k- ,k many users have packets to transmit. If two or more packets aresimultaneously transmitted, it is assumed that the receiver is

subject to unable to recover any of the messages, and they have to be
retransmitted in a future slot. In the ALOHA algorithm, which

Sk )was developed in the early 1970's [I] at the University of Hawaii
+ 2; zi(WO~) ) E S and marked the beginning of the area of random-access communi-

\ .i-i cation, each packet that has been unsuccessfully transmitted
before is transmitted with probability p in the next slot. New

which is a conventional LP where the initial condition plays the packets which have not attempted transmission before are
role of a parameter, the sensitivity with respect to which can be transmitted with probability either I or p depending on which
studied by the well-developed theory of sensitivity analysis of version of the ALOHA algorithm is used. In our discussion, we
linear programming [151. will assume the latter choice.

In conclusion, we see that the MDP is converted to an Under these conditions, and assuming that the number of newly
equivalent LP under very mild conditions that are usually satisfied generated packets in each slot is a random variable (with mean X)
by dynamic routing and other queueing control problems. Thus, a independent from slot to slot, the number of packets awaiting
third alternative methodology becomes generally available for the transmission (called backlog) is a Markov chain taking values in
study of these problems. Whether to choose from the arsenal the {0, 1, 2, ... }. The central problem is to investigate under what
DPE approach, or the LP method, or stochastic dominance tools, conditions the backlog Markov chain is ergodic, i.e., it is stable in
depends on the problem and on the, as yet undeveloped, intuition the sense that it reaches a steady state in which the periods
that the investigator should possess. between the times when there are no packets to transmit are not

too infrequent (they have finite expected value). The transition
III. MULTIPLE-AcCES COMMUNICATIONS probabilities of the Markov chain are parametrized by the rate of

arrival of new packets X and the retransmission probability p.
The communication networks considered in the discussion of Whereas X is fixed and given, p is chosen by the transmitters.

routing problems in Section II consist typically of a set of nodes Hence, we are dealing with a fairly simple controlled Markov
connected by point-to-point communication links. Each of these chain whose control space is the interval (0, 1]. In the original
links viewed in isolation can be modeled as a classical communi- ALOHA algorithm, the control p remained constant and common
cation channel with one sender and one receiver. In this section, to all transmitters regardless of the information acquired by
we consider multipoint-to-point communication links where sev- listening to the channel, thereby resulting in the open-loop control
eral transmitters share a common channel. Multiple-access of the Markov chain. Depite several "proofs" of the stabilitiy of
channels are the basic building blocks of radio networks, satellite ALOHA published during the 1970's, neither the actual system
communication, and local area networks, and during the last 15 built in Hawaii nor the ideal Markov chain model were stable. The
years have attracted the attention of many communication. re=a-, why the open-loop system is unstable can be easily
information, and control theorists. understood by considering the backlog drift, d(n), which is

There is a wide variety of strategies to divide the "resources" defined as the expected increase in the backlog over the next slot
of a communication channel among several geographically dis- when the cuiTent value of the backlog is equal to n. It is easy to see
persed transmitters. The simplest methods are those that assign a that the backlog drift is given simply by the expected number of
permanent independent sub-channel to each transmitter (e.g., in new packets pet slot minus the expected number of successfully
frequency division multiple access and time division multiple transmitted packets in the next slot, i.e.,
access); these strategies are easy to analyze and are widely used in
practice in situations where the users need to transmit at fairly d(n)=X-[np(l-p)"-']. (3.1)
steady rates. If the transmitters are bursty (i.e., the radio of peak-
to-average rate at which the need to transmit is high) those static The drift quantifies the expected evolution of the Markov chain
methods are inefficient since most of the time the channel is from each'state, and therefore it is a valuable tool in analyzing the
underutilized while demand (and induced delay) accumulates at stability of the chain. For any p E (0, 11 the term in brackets in
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(3.1) goes to 0 as n - co, and hence, the drift is positive and close 60
to X for sufficiently large backlogs. This implies that when the
backlog is large it tends'to grow, thereby eliminating any hope for
stability. Using standard results, this reasoning can be formalized
straightforwardly to prove not only the instability of the open-loop
system [111 for all values of X and p, but the fact that the backlog
goes to infinity with probability one [25], [35], [40]. 0

Fortunately, the system can be stabilized by closed-loop 40
control. Let us examine first the case of complete-state informa-
tion, i.e., each station is informed at the end of each slot of the o
current value of the backlog and chooses the retransmission "
probability on the basis of that information. As far as stability is
concerned, the best choice of the retransmission probability p is
the value that minimizes the drift because that results in the 20-

maximum possible arrival rate tiat guarantees stability (called the
throughput). It follows from (3.1) that the optimum value of p is

p*(n) =I , n= 1, 2, . (3.2)
n

and the resulting drift is 20BACKLOG 40 60

Fig. 5. Drift of (backlog, backlog estimate) Markov process for decentral-
d*(n)= X- 1- (3.3) ized control with a = -1.48, 0 = 0.8, and X = 0.33.

which is negative for n > 1 when X < e- I, and is positive for ck)}k (rather than the backlog itself) which is a Markov process.
large backlogs when X > e- 1. Therefore, the throughput of the According to (3.4) and (3.5) the drift of this Markev process is
closed-lop system with complete state information is e- I = given by
0.368. However, the relevance of complete state information E[(nk+, fik+)-(nk, fik)(nk, fik)=(n, s)A
feedback is rather limited in practice. This is because the
instantaneous value of the backlog is available to each station only Xn! /] ,,-a (a
if there exists so large a degree of communication among the [ I 1 S]transmitters that much more efficient algorithms than ALOHA
can be used. - (d(n, s), c(n, s)). (3.6)

The case of partial state information is the problem of interest in
practice, since the only feedback available to each station is the Contrary to what we saw in the case when the state is known, it is
outcome (collision, success, empty) of the transmission in each not true that the backlog drift is negative for sufficiently large
slot. The analysis of the controlled system with partial state backlogs. As we can see in Fig. 5, if the estimate is far from the
information was pioneered by Hajek and Van Loon [20] who true value, then the backlog may actually tend to increase.
proposed a recursive updating law of the retransmission probabili- However, at every point in the state space the tendency of the
ties as a function of the channel outcomes. This feedback policy process is to approach the diagonal where the estimate is equal to
was shown in [21] to attain the throughput achievable with the true value of the backlog. Furthermore, as Fig. 5 or the
complete-state information, namely e- 1. Those papers and subse- analysis of the perfect-state information case shows, the drift
quent works have referred to the problem as decentralized along the diagonal is negative. Such a behavior is a strong
control of ALOHA, motivated by the fact that each station indication of the stability of the controlled Markov process.
chooses the retransmission probability autonomously based on the This can be proved using a powerful sufficient condition found
channel feed1-- 'owever, it is useful to recognize that the by Mikhailov [31] for the stability of a Markov process taking
problem bol' to (centralized) stochastic control with one values in (R × W+. In essence, Mikhailov's condition states that
decision ir . and incomplete state information because all it is enough to restrict attention to those points of the state space
stations are constrained to use the same retransmission probabili- where either the backlog or its estimate are large and at which the
ties. drift is radial, i.e.,

We will review here the proof of stability of the following d(n, s) n
certainty-equivat'ence closed-loop control: , =

c(n,s) s'
(3.4) then, it is sufficient for stability that the drift point towards the

origin at those states. To see that this condition is indeed satisfied
where fi is an estimate of the backlog updated according to for our system, we compute first the asymptotic d.rifts along theradius {(n, s): n/s = €,} for 0 E [0, co)

fI max {, fk+a} kth slot is idle
i, =.r+ kth slot is success or collision. d(O)= lin d(ks, s)=X -Oe- (3.7a)

(3.5) c(#) = lim c(os, s)=3+(a-0)e - . (3.7b)

The throughput attainable with this feedback law depends on the
constants a < 0 and fl > 0. As we will see, there exists a set of It can be checked using (3.7) that if the constants a and f in (3.5)
choices for those constants that results in throughput equal toe - '. are chosen such that 0 > 0.23X andX - e- = fl + (a - g)e- ,

Unlike the case of complete-state information, the proof of then the drift is radial only at 0, = 1 (cf. Fig. 5), where it points
stability is not straightforward because now it is the two- towards the origin as long as d(l) = X - e"' < 0.
dimensional process formed by the backlog and its estimate {(nk, Mikhailov's sufficient condition can be justified constructing a
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stochastic Lyapunov function to prove the stability of a Markov B. Simultaneous Transmission
process (Xk}k with state space W+ X, W*. To that end, it is
advantageous to switch to polar coordinates (r, 0) and to define In contrast to random-access communication systems, in
the radial drift 6(r, 4,) as the projection of the drift along the simultaneous transmission multiple-access systems, the transmit-
direction of the point (r, 4,) and the tangential drift (r, -0) as the ters send their messages simultaneously, independently, and
projection of the drift along the direction perpendicular to (r, 0). without monitoring the channel in any way. The most common
Denote the asymptotic drifts 6(,) = lim,... 6(r, 0,) and p(O) = type of simultaneous transmission system is code-division multi-
lim,.,u (r, 0) and define the function plexing, where each user modulates a preassigned signature

waveform known by the receiver.
V(r, 0)= r4(O) Specifically, we will assume that in order to send the message

{bk(D) E A }m; (i.e., a string of Msymbols drawn from a finite
where set A), the kth user transmits

f(0o)=exp (C U(V)v) ,E [0 . M-io 10 2 bk(i)sk(t-ir)

1-0

Note that V(r, 4,) is a candidate Lyapunov function because it is
positive outside the origin and V(r, 4) - oo as r - oo. where {sk(t), 0 - t : T) is the waveform assigned to the kth
Furthermore, it can be shown [31] that the asymptotic drift of the user, and T is the symbol period. Then the demodulator receives
candidate Lyapunov function is equal to the sum of the signals transmitted by the K active users embedded

in noise
lim E[ V(xk+ ,)- V(xk)Ixk= (r, 4,)] = (,)[(0) - Cs 2()]. (3.8)

K M-1r(t)=J Z bk(i)s,(t-iT-rk)+n(t) (3.8)
Now, under Mikhailov's condition, the asymptotic drifts are k- 1-0
assumed continuous on [0, x/ 2] and 6(0,) < e for any phase such
that p(q5) = 0 (i.e., whenever the drift is radial it points towards where the offsets-_ < r, E [0, T) model the fact that the users
the origin), therefore, the constamt C can be chosen large enough do not synchronize their transmissions. Then the task of the
so that the left side of (3.8) is upper bounded by a negative receiver is to recover the transmitted information strings
constanL This implies that V(r, 4) is indeed a stochastic {b(i)1m-i. Following [471 we will show how to obtain an
Lyapunov function and therefore standard results on the stability optimum mti ser demodulator via dynamic programming. First,
of stochastic systems 127], [45] can be applied to show the denote the MK-vector
stability of the system. '

In some rmdtiaccess environments, the receiver can indeed
demodulate reliably one or more pai.kets evenintip scof d={de+ =bk(i), k1, K, i0, .,nM-e }
other interfering packets and the colisio cannel model m
longer applies to those cases. The results reviewed in this section and the niltittser signal in (3.8)
can be generalized to -a general channel with mu/tipackd
reception capabiity, to show th* 1) the throg st of open-oop K M-t MK
ALOHA is equal to the limit of the weed xnmber of S(t, d)= Z b(i)sk(t-iT-k)=Z diz,(t) (3.9)
successfully received packets per sli as the backlog goes to k-. .
infinity [171; and 2) the dumoput of closed-oop ALOHA (with
either complete or partd stae infomiation) iS eCUl to the What z,,(1 =s,(t - IT - r).
maximum over u of the expected number of succenfully receivd A rewda crberimn fr demodulating the information carried
packets per slot when the number of atCe tred mminsmo is a i S(t, d) up= obaervticm of r() is to select the MK-vector d
Poisson random variable with mean V [181. tbi beg eplais the vecived waveform in the sense of

Returning to the case of the collision channel, the nex natural t bet etdihe enegy of the corresponding noise realization,
step is to drop the main remictim in the ALOHA algorithm e
namely, that all stations use the same reansmission probability.
This is done in a class of random-access algorithms referred to as
collision resolution algorithms which are characterized by the fact min 1S(t, d)-r()12 . (3.10)
that not only are all blocked packets eventually reanswitted d6A~f

successfully, but all users eventually become aware that these
packets have been successfully retransmitted. Contrary to the If the noise n(t) is white and Gausdae then this criterion results
ALOHA algorithm, the decision whether or not to transmit a in maximum likelihood decisions. Eqoivalently, the objective is to
packet takes into account the previous history of attempted find the vector that solves
retransmissions of that particular packet. The introduction of this
new dimension into the problem renders Markov chain tools max (3.11)
considerably less useful than in die foreg6ing analysis and dAAff
converts it into a very difficult decentralized stochastic control
problem, for which the optimum throughput remains unknown5 where
despite many efforts.

0(d)=2 S(1, d)r(t) di- 1 S 2 (1, d) dt. (3.12)
4Another choice of stochastic Lyapunov function for the specific case of

decentralized control of ALOHA can be found in (43]. Since the maximization in (3.11) is over a finite set, we could solveThe best known algorihun has ben shown to achieve a throughput of by the btfmtod
0-488 using Howard's policy iteration for sequential infinite-horizon problems it by the brute-force method of evaluating 0.(d) for each possible
(321 or by reduction to a simple optimization problem [481. On the other hand, argument. However, it is possible to decompose 0(d) in a
it is known that the optimum throughput is upper bounded by 0.568 [441. sequential fashion that lends itself to efficient optimization. From
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bi(.) Ib() b(21 b(3) bl(4) where gk(m) = R(k + K, k + in). Putting together (3.12),1 7 10 13 (3.13), and (3.16) we see that we can express 01(d) as a sum of
MK terms, each of which depends on K components of d and such

b4 01 b2( b42) b43) 1:4) that consecutive terms depend on the same components but one.
I 1 z" a' i I4 Specifically, we can write

b3 (O) b3(l, b3 (2), b3 (3)I b5 (4), MK

3' 6' 9' 12' 15' 0 (d)= Y Xj(xj, dj) (3.17)
Fig. 6. Symbol epochs for K = 3 and M =.

(3.9) it is immediate to write the first integral in (3.12) where
sequentially MX Xj(x, u)=u[2yj+uiv,1j)-2xTg,(1)l (3.18)

S(t, d)r(t) dt= djy1  (3.13) and x1 is the state of a shift-register K - 1 dimensional system

where x]'+, =[xj+1(l), ...,x1+ (K- l)1=[x,(2), ... , x(K- 1), d];

yj= zj(t)r(t) dt. (3.14) x0=0. (3.19)

This implies that the objective function (3.12) depends on r(t)
only through the quantities {yj}ir, which are obtained by It is now apparent that the solution to (3.11) entails solving a
correlating r(t) with each of the signature waveforms during each finite-horizon deterministic optimal control problem with
symbol epoch. In order to find an explicit expression for the additive costs per stage for the linear system in (3.19), and with a
second integral on the right-hand side of (3.12), which is the finite admissible control set A. Therefore, optimum multiuser
dnergy of the multiuser signal, we will denote demodulation is equivalent to a shotest path problem in an M-

stage layered directed graph, where at each stage there are A i
states. This optimization problem can be solved by dynamic

1(j, 1)I zj(t)z1(t) dr. (3.15) programming (e.g., [7]) in backward or forward fashion. In
- practice, it is necessary to demodulate the transmitted symbols in

real-time, and since M is usually a very large integer, it is notIt follows immediately from the definition that these coefficients feasible to wait until all the observables fy AIXK have been
satisfy the following properties. Jj+I1) R(k + iK, k + iK) = s (t) = w,. obtained before starting to make decisions. Therefore, a subopti-2) R(k + iK, n + iK) = R(k, n) for all . mum version of the forward dynamic programming algorithm is2) R(, 1) = 0 unless i - II < K. adopted in practice whereby each decision is based on the paths3) R(j, 1) = ines ta - 11 < K. corresponding to the cost-to-arrive function computed a fixedThe first property indicates that each of the diagonal elements number of steps ahead. This real-time version of forward dynamicof R(i, j) is equal to the energy of one of the K assigned programming is known in communication theory as the Viterbi
waveforms. The second and third properties can be illustrated by algorithm [12], and was originally devised (without resorting to
referring to Fig. 6 which represents the symbol epochs of three the dynamic programming framework) for decoding convolu-
asynchronous users sending strings of M = 5 symbols. Each tional codes. The maximum-likelihood criterion used in (3.10) is
symbol period in Fig. 6 is labeled with the index of the not the only possible optimality criterion. For example, if the
corresponding component of the vector d. The second property objective is to minimize the probability of error for each user,
indicates that the cross-correlations between two signals depend then the multiuser demodulator uses a brckward-forward
only on their relative location (e.g., R(4, 6) = R(13, 15) in Fig. dynamic programming algorithm [49] whereoy optimum deci-
6) and the third property states that each symbol only interferes sions are based on the independent computation of a cost-to-go
with 2K - 2 symbols of the other users [e.g., in Fig. 6, d9 = and a cost-to-arrive function.
b3(2) only overlaps with d7 = b1(2), d8 = b2(2), dio = b1(3), and
dI= b2(3)]. It follows from these properties that the coefficients
in (3.15) can be obtained from the K x K matrix {R(k, IV. OTHER PROBLEM AREAS
n)} K whose diagonal elements correspond to the energy per
symbol of each user and whose off-diagonal elements correspond Routing and multiple access are not the only problem areas in
to the cross-correlations between the signature waveforms of each the field of communication networks which control theory can
pair of users. Using (3.15), the foregoing properties, and letting help formulate, study, and solve. We have deliberately chosen to
K(j) E 1.. K} be the modulo-K remainder of ] (i.e., for confine our attention to these two areas in order to get across in a
some i, j = x(j) + iK), we can write concise manner our belief that the field of communication

networks offers a rich selection of applications for control theory.
MX MX We would feel remiss, however, if we did not even make an

S2(t, d) dt= Z Z djdR U, 1) attempt to provide a taste of some of the numerous other design
--1 . and operation issues that, again, bring forth control bystems

concepts and techniques. For this purpose, and with a conscious
U r J-1 effect not to expand in depth but only to describe, we will mention,=Z djLiv(/) +2 dR(j, 1) two areas from point-to-point networks and one from radioj..-I+ I networks. The first two concern flow control and integrated

K-I " switching, respectively, while the third concerns the problem of
d= [w,(j)+ 2 Z dj_,g(j)(K-n)] scheduling transmission in multihop networks. vlike t cases of

drouting and multiple access, these areas have not yet fully." "I benefitted from the use of control theoretic approaches although
(3.16) such approaches.would be very well suited to them indeed.
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A. Flow Control

A stark reality in the design of networks is that despite the
reduction of the cost of memory, storage at each node is going to N 0 0 0 o a * . o,0000
be finite. Coupled with another reality, namely that data transmis- - 0 000000000
sions on the whole continue to be bursty, it implies that buffer 0 0 0 0 0 00 000overflow may occur and, along with it, congestion and deadlocks. a * 0

Flow control is the name we use to describe the collection of 0 a 0 0 0 0 0 0 0 0 a 0
measures taken to avoid buffer overflow and highly congested aooAo 000a 0000
nodes in the network. Congestion and saturation are often the 0000 = o o a
consequences of diverging, unstable behavior. Thus, it is of
interest not only to optimize over possible flow control strategies,
but to determine their robustness against disturbances or modeling Fig. 7. Switching-type optimum policy for integrated switching.
inaccuracies that may lead to unstable behavior.

The control variables in flow control problems are admission
(or blocking) probabilities for messages or sessions at the source therefore, N = W/Vbe the maximum number of calls that can be
node. In practice these are often implemented in terms of a bang- assigned dedicated circuits simultaneously if no data packets are
bang control strategy known as window flow control whereby transmitted. A voice call can either be accepted (and assigned the
input ports are allowed to continuously inject messages into the necessary bandwidth V) or blocked. Data packets can be stored in
network at the full desired input rate until the number of a buffer facility. If, at a given time, there are i calls in the system,
unacknowledged 6 messages exceeds the value of the "window the data packets can be served at the full rate corresponding to the
size" w. A simple, yet unanswered question is, what should the remaining bandwidth W - iV. Such a switching architecture
value of w be? represents what has been called the movable boundary idea in

Previous efforts to use control theory tools to analyze optimal integration. A natural MDP can be simply formulated as follows:
flow control problems include [28] and [46] where the optimality choose the control action of blocking or accepting a call upon
of window flow control is proved within the domain of a arrival in order to minimize the weighted sum of the average data
simplified model, and [39] where dynamic programming value packet delay and the call-blocking probability. If we assume that
iteration techniques are used to characterize optimal flow control both arrival streams (voice calls and data) are independent Poisson
perfcrmance. An alternative approach to the flow control problem processes, that the call holding time is exponentially distributed,
is to subsume it into the static routing problem considered in and that the message lengths are likewise exponential, we can
Section II-A [19]: suppose that for every source-destination pair a apply the technique described in Section II of converting the MDP
fictitious direct link is added between them. We can then interpret to an LP and show that the optimal policy has the useful
the blocking action of a flow control procedure as a diversion of switching-type form. Namely, if i is the number of ongoing calls
the blocked portion of the traffic through this fictitious link to the and j the total number of data messages at the node, the optimal
destination. Thus, we can consider that no traffic is blocked. Of control action should be to block the call in region B of the state
course, in order.to discourage the use of this .titious link we space as shown in Fig. 7 and to accept it in region A.
must augment the overall delay cost function with a term that
penalizes appropriately the use of this link. C. Link Scheduling

B. Integrated Switching Let us now turn our attention back to the radio network
environment. In Section III the multiple access channel was

A revolutionary development in the field of networks whose considered and a number of difficult but interesting control
implementation is currently under way is the combination of the problems were identified. Throughout that discussion, it was
capabilities of what have been separately developed in the past and assumed that all terminals are within a single transmission hop
called voice networks and data networks. Voice is a commodity from the destination. In many radio networks, however, this is not
that must meet different requirements than data. For example, the case. Messages need to be relayed via intermediate nodes to
speech signals have inherent redundancy that make them quite their final destinations. Thus, the familiar problem of routing
robust with respect to occasional errors or deliberate compres- arises again, except that this time there is a new twist to it. In
sion. At the same time, except in applications of voice messaging, point-to-point networks, transmissions between different node
speech signals occur in the context of real-time conversations and, pairs can take place simultaneously because there are dedicated,
as such, must encounter short and, more importantly, constant "hard-wired" links between the corresponding nodes. In a radio
delay. On the other hand, data must preserve their integnty and (or, more generally, in a multiaccess/broadcast) environment, if
cannot tolerate errors, however, long and variable delays can be the nodes are densely connected, not all transmissions can take
often tolerated. place simultaneously (unless separate dedicated channels or

How does one design a single network that can handle such simultaneous transmission signaling techniques (Section III-B) are
dissimilar commodities with automated procedures? The natural used). They must be scheduled in time to avoid the interference
course of events in the last decade or two was to attempt to force that would occur otherwise.
data on primarilyvoice networks or to let voice ride on what were It becomes evident that the mere fact that the transmission
mainly data networks. The literature is full of ideas for baseline among a group of nodes must take place one at a time raises the
integration that ate mostly heuristic and difficult to analyze. An question whether the intended transmissions are routing-wise
attempt to formulate the problem of integrated switching as an optimal any more. Several versions of this problem have been
optimization problem was presented in [50]. In it simplest form studied [3], [23], [36). In every case and even if the routing
the model is as follows: consider a single node in the network with problem is sidestepped, we are led to hard combinatorial
a single outgoing link on which- incoming voice calls and data optimization, problems where questions of computational com-
packets must be multiplexed. Let W be the bandwidth of the plexity and distributed implementation are of primary importance.
outgoing link. Let V be the bandwidth required for the continu-
ous, uninterrupted accommodation of a single voice call. Let, V. CONCLUSION

6 Note the implicit assumption of delayed feedback information from the It should be clear by now that the theory of linear and nonlinear
destmatior to the source node. optimization, dynamic programming, stochastic control, stability
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Abstract-A decentralized control algorithm is sought that maximizes this model, the reader is referred .o [61 and [8]. Denoting by C,, =
the slability region of the infinite-user slotted multipacket channel and is Ell kE,, the average number of packets correctly received in
easily Implementable. To this end, the perfect state information case collisions of size n, we assume that the limit C = limn, . C,,
where the stations can use the Instantaneous value of the backlog to exists, as is usually the case with models of practical interest. It
compute the retransmission probability is studied first. The best through- has been proved in [8] that the Aloha random access algorithm has
put possible for a decentralized control protocol Is obtained, as well as an a maximum stable throughput iqo = C in the multipacket channel.
algorithm that Achieves it. Those results are then applied to derive a Decentralized control strategies have been shown [111, [121,control scheme when the backlog is unknown, which is the case of (191, (25], [30] to stabilize the slotted Aloha algorithm in the case

practical relevance. This scheme, based on a binary feedback, is shown to of the usual collision channel, hence, it is reasonable to expect that
be optimal given some restrictions on the channel multipacket reception when those strategies are used in the multipacket channel, the
capability, resulting throughput will be higher than i70. We consider schemes

of the form

I. INTRODUCTION pn= F(Sn)

OST studies on random access communications rely on the S. +I= G(S., Zn) (1)
assumption that when two or more packets overlap, all the

mformauon that was sent is irremediably lost, hence the need to
repeat all transnussions at some later time. This is actually a where p, is the retransmission probability in slot n, S, is an
pessimistic point of view, since there are many examples of estimate of the backlog X, at the beginning of slot n, and Z, is the
random access systems where one or more packets may b2 feedbacr, at the end of slot n. The number of new packets arriving
successful in the presence of other simultaneous transmissions. In during slot n, A, is assumd to form a sequence of i.i.d. random '

order to represent such random access systems, a model for a variables with probability distribution P[A,, = k] = Xk(k - 0),
channel with multipacket reception capability has been developed such that the mean arrival rate X = E-* I nX, is finite. Each of the I
in [61-[8]. We consider a slotted channel with an infinite A,,- new packets that arrived during slot n - 1 is transmitted in

population of users, and we assume that the probability of havinn slot , with probability p,.
k successes in a slot where there are n transmissions depends only As in the case of conventional channels, it is useful to study first
on the collision size n the case of control with perfect state information where the value

of the backlog is given to the users prior to the selection of the
E,,k= P[k packets are correctly receivedin are transmitted] retransmission probability. To keep track of the exact value of the

backlog, a central controller is usually necessary, which is an
(n 2 1, O ks n). unreasonable requirement for most practical random access

channels. However, the study of the perfect state information case
We define the reception matrix as allows us to determine an upper bound to the best throughput q.

-achievable by any decentralized control of the form (1), andCIO Ell suggests a simple implementation. Those results are in turn helpful
620 6, C 2  0 to derive control protocols in the case where the backlog is

E=[ unknown. This is done in Section I where we consider a backlog
E no ,, ia nn estimate which is recursively updated using the binary feedback

empty/nonempty. In addition, it is assumed throughout the paper
that each station is informed when its packet is successfully

received. It is proved that provided a certain condition on the
This model can be applied to channels with capture [11-3], [101, reception matrix holds, the throughput achievable with this type of
[161, (181, (201, [231, [261, [281, (34] and to systems using feedback is the same as the perfect state information throughput
CDMA [221, [241, [291. It is also relevant for many other This condition is verified for most multipoint-to-point channels of
applications, such as systems with multiuser detectors [33] or, for practical interest.
instance, the channel studied in [17], [31]. For more details about In a paper whose translation appeared only very recently [19]

(after our work [7]), Mikhailov has derived sufficient conditions
Manuscript received April 18. 1988; revised January 20. 1989 and May 7, for stability and instability of two-dimensional Markov chains.
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0062, and by the New Jersey Commission on Science and Technology under enough to be applied to the multipacket channel. In Section IV we
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11. CONTROL OF THE MULTIPACKET CHANNEL wrrH PERFECT which becomes d.(p) = X - 4(p) if we define t(p) to be the
STATE INFORMATION average number of successes given the backlog n and the

retransmission probability p
In this section we assume that all the users know the value of X,

at the beginning of slot n, and we Ict the retransmission , (n)
probability be a function of the exact value of the backlog, i.e., p, t.(P) = pi(l -p) -ic. (5)
=F(X). In this ideal case, the system is much simpler to J-1 0/
analyze than in the general case (1) since (X,,),.o is a homogene-
ous Markov chain. Our goal is to determine the optimal control Since tn(p) is a polynomial on the compact [0,1), it achieves its

function F* that yields the largest ergodicity region, and the maximum and we can define
corresponding throughput, denoted by n, For instance, it is well
known [41 that for the usual collision channel with the access rule P* = arg max t,(p)= arg min dn(p).
in effect here, F*(X) = l/X, is the retransmission probability pE1o.11 p1O0.,,

that minimizes the drift at each step, resulting in an ideal
throughput of ij, = e- 1. We now proceed to compute the limit of the drift when the

First note that all the results herein are valid provided that the retransmission probability p* is used. We show that

backlog Markov chain (Xn, Sn),,.o corresponding to a control (1)
is irreducible and aperiodic. It can be easily checked that for both 0 Xn

access rules considered in this paper (see below), as well as all the, tn(p*)=SUp e - Cn.FSUpt(x). (6)
algorithms, a simple set of sufficient conditions for irreducibility ,,.
and aperiodicity is Let us first assume that C < + co.

a) XOO 0 Property 1:

lim t(x)=C.

b) ) + Xn nn<I We have for n > M
n-I

M) C10# - Xn
c o0t(x) -C e -xC + e x I C"-C1 +,. IC-Cl.

which are analogous to the conditions for the open-loop system n.n-M+

studied in [6]. The theorem below gives the best throughput (7)
1possible for a control protocol (1).

Theorem 1: There exists a retransmission probability P* that Pick e > 0 and fix M such that lCt - CI <e for n > M. Then if
minimizes the expected backlog increase when the backlog is B, is an upper bound on the sequence (C,),,, (7) yields
equal to n.

With such a retransmission probability, the system is stable for M xn
X < , and unstable for X > q,, with lt(x)_Cle-xC+2Bce-x T+f

n.

77Csup e-x ' .. and the right-hand side of this last equation goes to zero as x goes
x2:o R-i to infinity.

Property 2: For all e > 0, there exists A > 0 such that for all
Proof of Theorem 1: The proof is based on standard drift np > A, ltn(p) - C1 < e. We have

analysis techniques. (Xn),o is a homogeneous Markov chain
which evolves according to (n )

It(p)-lcj,5Z pj(l-p)"-JlC.Cl+(l-p)nC.
X(+ = X+Ar-S (2) J. I

where , is the number of packets successfully transmitted in slot Choosing M asfor Property I we get
t. The system is defined to be stable if (X,),,o is ergodic and
unstable otherwise. Let dn be the drift of X, at state n: d =
E1X, I - XXI = n]. We have 0 < Z, 5 X, and if we denote It,,(p) -Cl_<2B, pi(l -p) "J+e.
by p the retransmission probability used in slot t, then for n > 1, I.o
,te probability of having k successes is given by Let us denote by R, the random variable corresponding to the

number of retransmissions in a slot given that the backlog is equal

P[t= kl Xt= n j pl(l -p)n-IiE (1 .ksn). (3) ton. Wehave

It then follows from (2) that the backlog drift at state n a I is j PJ(I-P)n'J=P[R,<-M P P 2
iven by -. 0

for np > 2M. Then from the Chebyshev inequality
4

d. = × k PJOP[Rn:<M] <- 8
k~l j =knp

and Property 2 follows.
- l-p) -Ci (4) Property 3: tn(x/n) converges uniformly to t(x) on any

iicompact [0, A].
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Fix e > 0 and choose Msuch that S AjC./j! < e. Then for Proof of Theorem 2: To prove the first part of the theorem
n>M+Iand x E [0, A ] we use a result of [27] which is a generalization of Kaplan's

Theorem. If p, = F(S,) and S, I = G(S,, Z,), consider the
U Markov chain (Xt, S,) and the Lyapunov function V(n, s) = n.

tn - t(x) :5 Ai A1 e-x Assume that X > n,. Then
j-1 I

n~n-lE (-+) \ 'J[V(X,. 1, S, +1) - V(X1, St)j Xt= n, S,=sln(n- 1) .. (n-j+ 1) -+2e.
=J n- - F(sVj(I -F(s)) -JCj

Since lim,., n(n - 1) "" (n - j + )/nJ = 1 for 1 -- j < M, F.F )
it is enough to show that (1 - x/n)n- j converges uniformly to e-x
for 1 5 j 5 M. We have ,(12)

x e -
1- - e -< e-x[eX/n- 11 -e"""" - 1. ( for all n large enough and all s. Therefore, the drift of V is strictly

n tpositive outside a finite subset of the state space. Since it is shown
On the other hand, for n > A, in the Appendix that the generalized Kaplan's condition is

Y I- "ex) e-x~e AAl) verified, it is enough to conclude that (X, S,) is nonergodic.

1- -e- -e+nlg(l- Hence, n, is indeed the best throughput achievable by any
n)( n) decentralized control algorithm of the form (1).

To prove the second part of the theorem, we need the following
A , 1(10) property.
e nl /Property 5: If for all x z: 0, t(x) < supxo t(x), then supx~o

t W)= C.
and uniform convergence follows from (9) and (10). I(x) t C. = , itiseasilyseenthatC + . IfsupxoIf supx~o 1(x) =+ci 3esl enta o fsp,

Property 4: t,(x/n) converges uniformly to t(x) for x 2- 0. t(x) < + 0, then C < + oo. Consider a sequence (x,),, 1 of
Fix e > 0. From Properties i and 2 we can fix A such that: nonnegative reals such that lim-., t(x.) = supx o t(x). If (x,),,I
i) for all np > A, It"(p) - CI < E was bounded above by K < + oo, we would have for all n __ 1,
Then wer dsnuht x > [0, A], then frm Cxn) < sup,o.I t(x), and in the limit sup ,:o t(x) = supxeioxi
Then we distinguish two cases. If x E [0, A 1, then from t(x). Then there would exist xo E [0, K] such that t(xo) = supx~o

Property 3 there exists N such that for all n ;t N, It,(x/n) - (x), which is a contradiction. Therefore, (x,),,, is unbounded,
t(x)j < e. If on the other hand x C- (A, + o0), we have and one can build a subsequence (Xk)k I such that limk., v nk =

I + 00. We still have, of course, limk.,, t(xk) = supx1o t(x), but
t - t -C +t(x)-CI<2e (11) on the other hand, we have limk- ,(xk) = limx-. t(x). From

I )f I l \n I Property 1 in the proof of Theorem 1, limx-., t(x) = C and

from i) and ii). Property 5 follows.

Thus, we have shown that when C is finite, t,(x/n) converges Thus, if 71, > C, then t(x) achieves its supremum at some finite

unormly to he sow 0. It follows that limt.,( supx o nvege positive real A. Let us consider the control P, = AIX, for X, -
uniformly to t(x) for x is 0 . ) A. (Note that the value of the retransmission probability is left

Finally, we show that (6) hoi , when C = + o. Choose A unspecified for X < A because it does not affect the throughput.)
en Then from (4) d, = X - t(A/n), and from Property 3 in the

arbitrarily large and M such that C, > A for n > M.proof of Theorem 1 Jim d,, = X - t(A). Then it follows from
> M [21] that (X,),>o is ergodic if X < t(A) and from [13] and the

Appendix that (X,),,o is nonergodic if X > t(A). Thus, the
--j  (  maximum stable throughput of the system is t(A) = supxo t(x)

JM+ i (Note that the closed-loop throughput obtained in Theorems I
and 2 can be interpreted as r, = supN_..,x>oE[CN, that is as the

From (8) P[R, :_ M] is arbitrarily small for nx/n = x large supremum over x of the expected value of Cv if N is a Poisson
enough. Therefore, sup.o t,(x/n) = + 00 and lim,. t (p*) = distributed random variable with mean x, Note that if we were to
+ c. Since it is clear that if C = + o, thensupx ot(x) = + 0, follow the popular approximation [1], [2], [10], [161, [18], [24],

(6) holds. [261 that assumes that the number of transmissions in each slot, N,
From the equality lim,., d,(p*) = X - supxo t(x) and Pakes is Poisson distributed, and if we could choose any positive number

Lemma in [21], it follows that if lim.** C, = + co, then lim,- as the mean of N by regulating the retransmission probability, the
d, (p,*) = - 0o, and the system is always stable, whereas if limn- , throughput would be equal to the average number of successes per
C, < + 00, then (X ) zo is ergodic for X < n, = sup,,o t(x). slot, E[CNI, maximized over the mean of N. As in the usual
Also, it is shown in the Appendix that Kaplan's condition holds collision channel, a wrong analysis leads to a correct conclusion.
for this system when the sequence (Cn),.I is bounded, thus from Several examples are gathered in Table I (see [8 for details).
Kaplan's result [13], the backlog Markov chain is nonergodic Probably the most important conclusion of this section is that in
when X > q,. 0 general it is not necessary to compute the exact value of p, which

It is intuitively obvious that no decentralized control algorithm would require a large amount of on-line computations, and
of the form (1) can have a maximum stable throughput larger than seriously hinder any application of Theorem 1 to the case where
.The theorem below gives a rigorous proof of this fact and also the backlog is unknown. Two cases may occur. If t(x) does not

shows that this throughput can be achieved with a control which is attain its supremum, from Property 5 in the proof of Theorem 2,
much simpler than p*. we have 71, = no = C (e.g., this happens in the model developed

Theorem 2: The best throughput achievable by a decentralized in-[6] for mobile users w"th pairwise transmissions). In this case
control algorithm (1) is i, = supo e-xZ w x"/n! C,,. If nc > C no throughput improvement can be achieved by varying the

lim, ., C,, then there exists a constant A > 0 such that the retransmission probability, and therefore it is enough to restrict
control Pt = AIX, for X > A yields the optimal throughput q,. attention to the open-loop strategy studied in [8]. On the other
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TABLE I noise 0 < C r I and C, = 0 for n _> 2. Then T(x) = C, e=x(X
OPEN-LOOP AND CLOSED-LOOP THROUGHPUTS FOR SEVERAL + Xox) and T'(x) = Ce-xQXo - ,- ox). Therefore, for any

MULTIPACKET CHANNELS distribution such that X0 < X1, T(x) is maximum at T(0) + CtX1 ,
and the stability region is empty since CX < X, -< X. Note that

o- c., ,sup e-A~ , a in this sense, the immediate first transmission does not perform as
C- - well as the delayed first transmission with which the system can

.. ,always be stabilized.
h 0- If there are solutions to X < supxo T(x), then the bestthroughput achievable by the class of algorithms in (1) is v, = sup

,( I - . -1 0 q ,- (X:X < supxro T(x)}. This is what happens, for instance, when
(0pp,, () the new packet arrivals are Poisson distributed.

mob, e, Theorem 3: If the new packet arrivals are Poisson distributed,-,h I,- I the best throughput achievable with an IFT rule is the same as inana)mu ,, (8)
________ _ __ the DFT case, v, = supxo t(x).

n-ptI _ Proof of Theorem 3: If limn.,-, C, = +o, then q, =
,T 01 + . Assume now that C < + co. We get

I I n -t 0 max ((AQ-I) €-A + 4-AQ) \A
*n() (i-Q), n > 1A>$ T(x)=e-(x±,\) Yj Cn+

n0 'n k-.0 k!

hand, if there exists A, 0 < A < +co, such that t(A) = supx:o =,.xCo
t(x), then we have shown in the proof of Theorem 2 that the =e-tx+x)  (x+ X)R. (13)
control p, = AIX, for X, -> A yields a maximum stable n-1
throughput t(A) = n,, meaning that the system is optimal. Hence,
only A has to be computed, and this can be done before starting Thus, in this case, T(x) depends only on X, and to clarify ihe
the operation of the system. proof below, we denote it by Tx(x)

Although in most practical applications (C,,),, _> I does have a
limit, it is worth noticing that Theorem 1 can be generalized to the Tx(x) = t(x+ X). (14)
case where C does not exist. It can be shown [9] that if the drift is Assume that (x) does not achieve its supremum. Then from
minimized at each step, then the system is stable for X < sup;.o Property 5 in the proof of Theorem 2, we have 77, = C = lim,,.
t(x) and unstable for > supyso t(x) + lim,.* sup C - lim-. t(x) It follows from (14) that for any X > 0, limx.. TA(x) = C.inf C .As in the open-loop system when (C ),,z 1 does not without Therefore, for all X > 0, supxao T\(x) - C. Hence, for all X >further informatio n the sequence (C,)t. But the main 0, supx_o T(x) = supxzo t(x), and by definition of v,, we finallycnoetr e m get v = supa.o t(x). Note that T, does not achieve its supremum,drawback in such a case is that there may not exist any control p. in the sense that if there existed X E (0, v) and xx > 0 such that=AIX,, that yields the optimal throughput. vc = T(x, we would have supxo 1(x) = 1(X + xx).The access rule for new packets that we have been considering Assume now that t(x) does achieve its supremum. there exists
so far is usually referred to as delayed first transmission (DFT). xo - 0 such that sup,,o t(x) = t(xo). Then for all X m [0, xo].
With this access rule, newly arrived packets are treated exactly in 0 sc t sup,o (x) = 1(x). Th for all X [0,
the same way as backlogged packets. Let us now examine what Tx(xo - ) = supx.o t(x) _ supx.o TA(X). Thus, for all X E [0,
happens when on the contrary an immediate first transmission xo]
(IFT) rule is used, that is when new packets are transmitted with sup Tx(x)=sup t(x)= T\(xo- X). (15)
probability one in the slot immediately following their arrival. It X;-o XZo
has been proved in [8] that the open-loop throughput .is the same
for both first transmission rules. The closed-loop throughput on We have for all x >. 0 t(x) : x, therefore sup,o t(x) :_ xo.
the other hand depends on the access rule. For instance, it is well Together with (15), it follows that for all X E (0, supxo t(x)), X
known [4] that for the usual collision channel in the IFT case, the < sup ,o T(x), and therefore v' > supxmo t(x) = t. Since from
optimal retransmission probability is p* = X - XI/3on - Xi, (14) supx.o T(x) < supxo t(x) = 7, for all X, we get <, : icand
yielding an optimal throughput e"Aoe/ie- ', in contrast to the finally iic)7,= sup.o t(x). Note that from (14), T\ reaches its
throughput qc = e- I for the DFT case. In the multipacket channel supremum too, since for all X < P,, there exists xx -> 0 such that
with the IFT rule, the optimal throughput depends not only on the Tx(xx) = V,.
mean but on the whole distribution of new packet arrivals. Note that we have also shown in this proof that T(x) reaches its
Interestingly enough, it can be proved that both throughputs supremum iff t(x) does, which means that 17, can be achieved with
coincide when the new packet arrivals are Poisson distributed. a control of the form p, = AIX, iff P, can. 0
Still with the same method as in the proof of Theorem 1, it can be
easily shown that there exists a retransmission probability that III. OPTIMAL CONTROL FOR THE MULTIPACKET CHANNEL
minimizes the drift d,, at state n. With such a retransmission
probability, the system with IFT rule is stable for X < supx,.o It is assumed from now on that the users do not have access to
T(x) and unstable for X > supxo T(x), with T(x) = e-x ,- the value of the backlog, so the problem becomes one of control of
-0/n! S0: X C,, , where we have defined Co = 0 for notatio= the Markov chain with partial state information provided by the
convenience. It can also be proved that a control of the form p,, = channel feedback. We build a backlog estimate S, with feedback
AIX,, yields a maximum stable throughput T(A). Since sup.,o which is such that Z, = 0 if slot t was empty, and Z, =0
T(x) depends on the whole new packet arrival distributio, otherwise. The results of the previous section strongly suggest
(X,),-0, this result is not as conclusive as in the DFT case. This is that we should use as a retransmission probability P, = A/S,
because the stability region X < sup,,o T(x) is actually given in where A is a point at which 1(x) achieves its supremum (according
the form of an implicit equation in X, which carnot~be solved in to Property 5, A is assumed to be finite). We show that the
general without further specifications on the distribution (X,),o. resulting control algorithm achieves the optimal maximum stable
For instance, this stability region couid be empty. Consider, for throughput n,. This holds provided that the following assumption
example, the usual collision channel with possibly some added on the reception matrix is verified.

f
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CO: There exists 0 > 0 and B such that for all n > 1, En, eO
enk 5 B. k e x-1+5Y x-l+Y

The purpose of condition CO is to bound the probability of
having large numbers of simultaneous successes. Unbounded /8

numbers of successes per slot are difficult to deal with because
they may result in very large instantaneous errors in the backlog
estimate. Note that condition CO is likely to hold in most
multipoint-to-point channels because of practical limitations on
the receiver capabilities, and that it is verified for all the examples
in Table I.

Theorem 4: Assume that there exists A E (0, + co) such that
t(A) = supxo t(x), that the new packet arrivals (At)to are M------------
exponential type1 , and that condition CO holds. If o < 0 and 3 < d(n,s "

0 verify the following two conditions 2:CI: fl > X
C2: (1 - e- A) + r - X + ae"A = 0 x I- 5y

then the control algorithm (cf. the control laws proposed in [15],
[191, and [25])

A M s
Pt = Fig. 1. Drift properties (Proposition 1).St

S,+i= max (A, S,+al(Z,=O)+ l(Z= Proposition : There exist y E (0, 1/5), 6 > 0, and an integer
J0 > 0 such that for all J = Jo:

has maximum stable throughput equal to 'i,. i) for all (n, s) E C (- 53, 5,y) n UM, c(n, s) :5 - 6 and c(n,
Proof of Theorem 4: The proof is based on the method s, J) < -6 + v(J);

developed in [30]. The idea is to use the properties of the ii) for all (n, s) E C( -co, --y) n Uf, d(n, s) :5 -6 and
homogeneous. two-dimensional vector Markov chain of the d(n, s, J) < - 6 + v(J);
backlog and its estimate M, = (X,, S,) to build a Lyapunov iii) for all (n, s) E C(,y, + o) nf tU, d(n, s) z_ 6 and d(n, s,
function whose drift is negative in the first quadrant of the (n, s) J) '- 6 - v(J)
plane when X < 7,- It turns out that this fails to hold in two cones where v(J) is a nonnegative function which goes to zero a J goes
of the state space, but it can be proved that the J-step drift of the to infinity.
Lyapunov function is negative for some integer J, and that this is The detailed proof of Proposition 1 can be found in [9]. After
enough to ensure that M, is geometrically ergodic. It follows from computing the value of the drifts
Theorem 2 that M is nonergodic if X > 7. For substantial
portions of the proof, the reader is referred to [9] because of space c(0, s) = X (16a)
limitations.

Denote by X, = S, - X, the error in the backlog estimate. The ( /)( )i (IA ) C
first part of the proof mainly consists of computing and c(n ,s)= n >_ ,) (16b)
approximating the drifts of X, and X, which are the basic building s J \S1

blocks for the Lyapunov function.
Denote by c(n, s) = E[X,I - X1M = (n, s)] the backlog d(0, s)=max (A -s, a} -X (17a)

drift at state (n, s), and by d(n, s) = E[X,+ I - X, IM, = (n, s)]
the drift of the backlog error. For technical reasons, what we most d(n, s)=- X + (max {A -s, a } -3) l-
often use in the proof are the truncated drifts, which correspond to \ 7
the value of the drifts restricted to those paths where the variation n ) /
in the backlog is bounded by some integer J, that is c(n, s, J) = + n A I , (n ) (17b)
E[(Xt - X,)I(X,+, - X,j sJ)jM, = (n,s)]andd(n,s,J) s 

- E[(X,+, - X,)J(IX,., - Xj <J)IM = (n, s)]. Clearly,
these truncated drifts will be good approximations of c(n, s) and we work out upper and lower bounds by truncating the sums (16)
d(n, s), respectively, when J is large. It will turn out that the and (17) to a fixed number of terms, and then we approximate
drifts dcpend primarily on the ratio x = n/s for large values of n those bounds as a function of the sole variable n/s. The main idea
or s Thus, it is convenient to define the following two regions in is that the dynamic behavior of the Markov vector M, = (X,, S,)
the (n, s) plane: depends essentially on the ratio X,/S,. For instance, if x is nearly

equal to 1, the backlog estimate is close to its ideal value, and we
should have c(n, s) < 0 since the backlog drift is negative in the

C(Xo, X ) = {(n, s) : n z-0, s2 0, 1 + i0<-n:51 + X,} perfect state information case. Also, a well-behaved estimate
should be such that if x < 1, then the error s - n is positive, and
therefore should have a negative drift d(n, s) < 0 (see [15]). In

UM= {(n, s) : n>M or saM} the same way, we expect to have d(n, s) > 0 for x > 1.

where No and X, are such that - o _< Xo <5 X, _ + o. The aim Let us define the following Lyapunov function;
of the first part of the proof is to show Proposition 1 below which 1+3- 1- 37
summarizec all the properties of the drifts that are needed for our V(n, s)=max n, - (n-s), - (s-n)3
purposes (see Fig. 1). 33

where the constants have been chosen so that V is continuous.
A, is exponential type if there exists d > 0 such that E[ed'! is finite. For V(n, s) is equal to the first, second, and third term inside the

instance, this is true if A, is Poisson distributed. bracket when (n, s) is in C(- 3-, 3y), C(3y, + oo), and C(- o,
Conditions CI and C2 define half a straight line in the plane, and therefore b rspet vel N, st is d s as o ake t best

an infinite number uf possible estimatiun s.hemes, all of them yielding the - 37), respectively. Notice that V is defined so as to take the best
same throughput. advantage of the drift properties listed in Proposition 1. For -
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instance, when V(n, s) is equal to n, then the Markov chain M If M, belongs to the other two regions, C(47 , oo) nf UQj) or
belongs to C (- 3y, 3y) which is included in C (- 57, 5-t) where C( - 47, 4y) n UQ(j;, a similar argument holds, using
the backlog drift is negative provided that either n or s is Proposition I iii) and ii), respectively, along with (20) and (21). It
sufficiently large. Similar comments can be made about the other follows that for all J _. Jo and for all (n, s) E UQ() n [C(- 00,
two regions. Unfortunately, this does not enable us to conclude - 4y) U C(-2Y, 2Y) U C(43Y, 0o)]
that the drift of the Lyapunov function is negative in UA because
Mt+ i may well be in a different region than M,. However, this Ef(V(M,+1)- V(Mt))I(At-III5J)JM,=(n, s)]-< -61+v 1 (J)
change of region becomes unlikely if we exclude a small zone
around the lines x = 1 :t 3,y where V changes definition and (22)

indeed the second part of this proof consists of showing that the with 6 = mi (1, 1 - 3,y/37}6 and v1 (J) =(J) 1 + 3,y/ 3,y.
Lyapunov function has a negative drift in the remainder of the To ded1 with the second term on the fight-hand side of (18), we
state space. consider the further decomposition

Proposition 2: There exist Mo -> 0 and 6o > 0 such that for all
N >: Moand forall (n,s) E Uf l [C(- o, -4y) U C(-2 7, E[(V(M 1+)-V(M))IAt- 1 I>J)IM,=(ns)
2 y) U C(47 , -),

E[ V(MI+ 1) - V(MI)l M, = (n, s)] < - b0. = E[( V(Mt .) - V(M,)) l(IAt >SY, +J)l M = (n, s)]

Proof of Proposition 2: We consider separately likely and +E[(V(M,+ )-V(Mt))I(Et>At+J)IM,=(n, s)]. (23)
unlikely events Let us denote by Ti (n, s, J ) and T2(n, s, J ) the two terms on the

E[V(M,+ )- V(M,)IjM=(n, s)] right-hand side of (23). The first term T, (n, s, J ) corresponds to
=E[(V(M,,)- V(Mt))I(JA,-Z, <J)JMt=(n , s)] a case where the variation in the backlog is bounded below, and

can be shown to vanish as J increases by using the sole fact that

+-E[(V(Mt 1)- V(M))I(IA-,jt>J)IM1=(n, s)]. (18) the mean arrival rate X is finite. Consider now T2(n, s, J). IfM,
= (n, s) belongs to a region such that x = nis > x0, then x0 can

We start by showing that the first term, which corresponds to be chosen large enough so that if Mt+I belongs to C(-co, -3,),
likely events, is negative when J is large by using the properties of then the error in the backlog estimate which results from the large
the truncated drifts from Proposition 1 and a simple geometric number of successes just compensates the initial error n - s >. 0.
result. The lemma below, whose proof is in [9], gives a measure On the other hand, when M belongs to any region such that x is
of how much a cone C(Xo, Xi) expands if each of its points is bounded above, then E[ZtJ(Z t > J )IM, = (n, s)] goes to zero
allowed to move of some distance that cannot exceed B in absolute uniformly in (n, s) and T2(n, s, J ) can be dealt with by using the
value along each axis. following rather crude bound for the variation of V:

Lemma: Consider 7> 0, B > 0, and7 - 1 X0.< X, <
++ y;andassumethat n - n'I :- B, Is - s'I 5 B' andQ >- B! IV(Mt+1-V(M,)lsmax [I, 1+ 3yy'(l + IXiI)(Xi + 2 -I,)Then:IVM+)(MImx

1) (n, s) E c(Xo, c*) n UQ •(icI++IA,-SI)<R(I+IAt-ZI) (24)

S-- (n', s') E C(x6- 7y, -) n UQ-B where R is some positive constant. It is shown in [9] that

2) (n, s) E C(-cc, X) n uQ E[(V(Mt+)- V(M,))1(IA,-YfI>J)IM,=(n, s)]

(n', s') E C(--, xi+3-) 13 UQ., <v2(J)+ej(n, s) (25)

3) (n, s) E C(xo, 1) n UQ where lim., v2(J) = 0, and ej(n, s) is a nonnegative function 7,.

(n', s') E C(x -yx,1+-) n u,-,. that depends on J, and goes to zero as either n or s goes to infinity.-
By using (22), (25), and the decomposition (18), we get the

Set B(J) = Max {J, 1a! + /0), and define Q(J) to be any real desired result that the drift of V is negative in this part of the state
such that Q(J) >- max {B(J) + M, B(J)/y (1 + 47) (2 + space: fix an integer J ,, such that Jm,n - Jo and that for all J t
3-t)}. We have IS,. 1 -St -< l l + 3 -< B(J), and if IA, - III Jm., vi(J) + v2(J) < 5t/3. Then from (22) and (25), we have
< J, then IXI,,I - XI <- J :- B(J). From the lemma, Q(J) is for all (n, s) E U,(,,,,) nl [C(-o, -4,) U C(-2 7 , 2-f) U
such that C(4y, oo)],

M, E C(-2 7 , 2,y) n UQ(J) - Mr+I E C(-3 7, 3-) nl UL E(V(M,+1)- V(M)jM=(n, s)]< --s 6t+e.(n 2S).

(19)
Then we can choose an Mo > Q(J,n) wlich is large enough so

M, E C(4, -) n U (.) - M+1 E C(37y, co) nl um (20) that elm.(n, s) < 86/3 for all (n, s) in UM0. 0
This concludes the second part of the proof. Unfortunately, it is

M, E C(-c c, -47) nl UQ() - M1 I E C(-cc, 37) nl u, not always true that the drift of V is negative outside a finite subset
of the state space. For instance, we have proved that in the case of

(21) the usual collision channel with Poisson new packet arrivals, there
whee Mexist constants B, > 0 and M such that for all (n, s) E UM for
where Mhas been defined in Proposion 1. Assume, for instance which x = I ± 37, and for all c and / verifying CI and C2,
that M, belongs to C(-2 7 , 27) Cl U¢). From (19), Mr,+! E E[V(M,+i) - V(M,)[M, = (n,s)] > B,,. However, discontinui-
(- 3, 3y) n" U. fl C (-57, 57) Cl U. Hence, if J -J0, we ties around the lines x = 1 ± 37 cancel out when one waits long

can apply Proposition I i): enough, and in the last part of this proof we show that the J-step

E(V(Ml 1) - V(M,))1(IA Z 1IS5J)IM,= (n, s)] drift of V, E[V(M,) - V(MI)IMt = (n, s)! is negative for
some integer J.

=c(n, s, J) -8+ ,(J). Proposition 3: There exist J1 > 0, p > 0, and M,> 0 such
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that for alr(n, s) E Uuyf

E [V(MI + f V(M,) IM, =(n, s)]S-pj./

Proof of Proposition: One of the main problems in dealingI/
with the J-step drift of V is to control the changes of regions/
between M, and M,+j. To this end, we define the stopping time / /

lj=min (S> 1Z (A1+k-Z1+k) >j'
s Ik-0 51J

if 7j :tJ, then forI:sk :J, IX+k -X11 J and IS+k -S11
< J(IaI + 03). Thus, if we define B'(J) = max {J(IceI + 13), x- 4y
J3}, and Q'(J) to be any integer such that Q'(J) -a B'(J) + /
max {Mo, M} and Q'(J) 2t 2B'(J)/7(1 + 9/27y)(57y + 2), /
then, still assuming that -rj -2 J, we get from the lemma for 0 :5 k//

<14

M, C oo 4y -) n u.,J

-M+k E C(--~, -47y) n Uuo (26) Fig. 2. ifm, e z, n UQ Iand ifr, -- J, then M,, belongs to the region
where the drift of V is negative.

MA E C (2-y+ 2- ) n ux, (j)

Pd,+k E C(-2 7 , 27) n uM0  (27) x1+5

M, E C (4 j + 2+~ n uq(

MM, E C(y -y)- -2 Un (29) Ij)

Ml+k E C( 7 , 57-) n um (30)s

6Fig. 3. If M, E Zp 0 UQ' (j) and if 7j a J, then M,,1 belongs to a region
In other words, we have partitioned the plane into two zones where two properties of Proposition 1 hold,

ZN= C(-c -4y~ -i u C( -y+l ,2.r-X) as follows:

C (47 )E[V(Mi~j)- V(M,)IM,=(n, s)]

and k-0

2 2) 2 2k-0

Then we have chosen Q '() such that if M, belongs to ZN which (1kM1k(T<)M=ns].3)
is slightly smaller than the region in which the drift of the -VM+)M+I~JJI,(l ).(1
Lyapunov function is negative, and if Tj 2: J, then the Markov
chain remains in the region in which Proposition 2 applies up to Denote by U, (J, n, s) and U2 (J, n, s) the two sums on the right-
time t + J (see (26)-.(28) and Fig. 2). Q'(J) is also such that if hand side of (3 1). If 7-j > J, then (26)-(28) hold, and therefore we
M, is in Zp and if r_ z- J, then up to time t + J the chain stays in a can apply Proposition 2
region such that two out of the three properties of Proposition 1
hold at each step (see (29), (30), and Fig. 3). U, (J, n, s):5 - JboP[rjz-J IM, =(n, s)]. (32)

We start by showing that the J-step drift of V is negative at (n,
s) when (n, s) belongs to Zv. We decompose the 1-step drift of V Let us now show that T., <~ J is indeed an unlikely event, the
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probability of which goes to zero as llJ uniformly in (n, s) since max {a, b} - max {c, d} _< max {a - c, b - d}. Then
using the fact that max {a, b} - max {0, a + f} + max {0, b +

PETj<JIM--(n, s)] f} - fforf > 0, we get

I- P (A,+i-l L, > J31 ,(n,S)
k.0 0 

[ 0, r C + 3'vIJ]A [m tlj

p j ,+>J31 M ,=(n, s) .

From Markov's inequality we have +E max L0 , (-3)
I 3y-2

P [ r s < J l M = ( n , s ) ] -- T < 7 I ) 1 ( r : J , = ( , s

k-0 1•0 (rj J) M , ( (36)
Denoting by B, an upper bound on the sequence t,(p*), it follows
from Section II that E1[Z,, 1+M, = (n, s)] = E[E1 ,+,tM,+IIM,

(n, s)J 5 BI, so we get where 61 =min {1, (1 - 3 -y)/37} has been defined in (22). We

- --j<J-M,-(n, (33) show that the first two terms on the right-hand side of (36) are
2 J2-j bounded. Since (33) imj. - 6aJ/2P[Tj ;L J] = - oo, this will

where B, is some positive constant. From (24), it is easy to check be sufficient to prove that limj.., EI(V(M,+j) - V(M,))I(rl >_
thatthedriftof VisboundedbysomepositiveconstantBv, sothat J)IM, = (n,s)) = -co. Define Wk = X1,k - X, + ky 1/2 and

nk = F, k; where F is the sigma-field generated by {A1, s -. t -
U2 {J, n, s)<~ JBVPI,< JIM= (n, s)]. (34) 1; X, s . t}, representing the history of the process (M,)1, 0 up to

Considering (31), (32), (33), and (34), we get time t. To prove that the first term in (36) is bounded, we show
)that there exists q > 0 such that (Yk, Fk) is a supermartingale,

EtV(M,+j)- V(M,)jM,=(n, s)]:5 -8oJ+(Bv+6o)B,. with Yk = eOWkI(rJ >- k). We need .3 show that ELYk I Fk] :5
Therefore, there exist constants ul > 0 and J, > 0 suc!. that for ]'k, which is equivalent to
all J _> Jt and for all (n, s) E UQ,(,) fn Z,,

E[ V(M+j) - V(M,)l Mt= (n, s)]. -JA. (35) 1 se0(t, k -lI +k]

We now proceed to show that the J-step drift of the Lyapunov -ef(X+kXt+(k/2)b)I(rjk)
function is negative in the remaining part of the state space ZP since I(rj >_ k + 1) = I(rj > k)t(Ts a: k + 1), and I(rj >_ k) is
consisting of the two cones around x = 1 ± 3,. This is done in measurable with respect to F+k
two steps. We first show that the J-step drift of V restricted to
likely events {rj >_ J} goes to -0c as J increases, and then we I(-rs>k)E[e6(xt+k+ -xt+k+6112)lF+k] <_(-'sk). (37)
prove that the J-step drift of V restricted to unlikely events {r <
J} is bounded above independent of J. Now if rj > k, then from (30), M,+k E C(3y, 5y) fl UM. Lemma

Assume, for instance, that (n, s) E C (y - y/2, 4 ,y + y/2) fn 2.2 in [I] states that if X is a random variable such that IXI is
EQ.(j). The difficulty here is that Vcan take two possible values, stochastically dominated by an exponential type random variable
and therefore Proposition I cannot be used directly. If ri _> J, Z, and if the expectation of X is strictly negative, EIX < - e,
then from (30) M,, E C(y,, 5-y) n UM for 0 r k _< J, so that then there exist two constants 7> 0 and p < I such that E[enx ]

V(M,k) = max {X k, (I + 33y)/3y(X,+ - S1.)}. There- < p < I. Hence, there exists 0 > 0 such that
fore,

for all (n, s) c C(-5y, -,y) n u.,r( V(M, ,) - V(M,))I(r.,-J)IM,= (n, s)] Efe*(Xt+ -xt+ /2)IM,= (n, s)J< I (38a)

=E (a 37, ( -S ) for all (a, s) E C(-co, -y) Cl £,

I (r, a J)IMt=(n,s)] E[e6(9t+,-t+6'/2)IM,=(n,s)]<l (38b)

E ma ( + i X for all (n, s) E C(y, o) fn u£,,

-E [max ,- E[e (-,t++Xt61/2)[M,=(n,s)]<l. (38c)

1It follows from (37) and (38a) that (Yk, Af,) is a supermartingale.
I(j>J) j M1 =(n, s) Therefore,

5E m ax X - 1+ 37 ( - ' . + f2) E [ YjIPo = E [ w 4(,rjI. J)IF,] E [ Y0 1 o= . (39)

L x 3, Finally, considering that max {0, x} -< 1/6 e01, it follows from
(39) that the first term in (36) is bounded. Using (30) and (38c), it

I *(7j>-J) I , S) can be shown with the same method that the second term in (36) is
also bounded. Thus, threre exists a constant Br independent of J
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such that Theorem 5: Suppose that:
i) the number of new packet arrivals per slot has finite second

J moment EIA,] < + co;
E[(V(M, - V(M))(rj>-J)IM=(n, s)]<Br- 6t~P[rjJ]. ii) there exists A E (0, + co) such that t(A) = supx,0 t(x);

iii) CO": there exists B < +co such that for all n _> 1,
The case (n, s) E C(-4y - y/2, -2y + 7/2) n UQ.(j) can be ER k2Ck :5 B.
dealt with in a similar way, using (38a) and (38b). Therefore, we Fix X < 71 and > 0 such that X < t(A ). Choose a < 0 and
have shown that there exist A2 > 0 and J2 > 0 such that for all J 3 > 0 such that

J 2 and for all (n, s) E YQ.(.,) n Z4, X - t(A )ea_

E[(V(M,+j)- V(M,))I(rj"J)IM=(n, s)]< -J 2 . (40) Cl': I3(eA - 1)=

It is shown in [9] that there exist a constant B > 0, a function
v3(J) with limj-, v3(J), and a nonnegative function vi(M) X.-t(Ax)-xe-A(x - (

depending on Jverifying limf.., vj(M) = 0, such that for all (n, " fl>m1 (X)= sup
s) E UQ.(J)+, 1 nZ 3, C2">.XE x - xe-A(X- ' )

E[(V(M,+j)- V(M,))I(rj<J)I M, = (n, s)] Then the control algorithm

<B+, 3(J)+vj(Mj). (41) A
Pt=-

We are now ready to conclude the proof of Proposition 3. From St
(40) and (41), we have for all (n, s) E u,.(,)+,, n ZP, S,+ 1=max {A, S,+ce1(Z=0)+3I(Zj=()
E[V(Mt j) - V(Mt)IM = (n, s)] s B - JA2 + vj(J) +
'.(M1). Fix an integer Jf ;! max {JI, J2} such that for all J Jr, is stable.
B - J2 + V 3(J) < -/.2. Then for all (n, s) E UQ.(jf)11 f,1 n Proof of TheoremS: Let us state first Mikhailov's Theorem
Zp, we have E[V(M,+jt) - V(M,)IM = (n, s)] 5 -j2 + (cf. [35] for an exposition of this result and its application in the
Vj (MI). On the other hand, we also have from (44), for all (n, s) decentralized control of the conventional collision channel).
U,.(El )+,, nZ , Theorem (Mikhailov [191): Let M, = (X, St) be a homogene-

ous Markov process on R + x R, with drifts

M(c(n, s), e(n, s))= E[ M,+- MI M=n, s)].
Now fix M1 large enough so that vj(M) </ A2/ 2 . Then define Spo that:

= Q'(J1 ) + M, and p = min {4 2/2, JA, }. Ef Suppose that:
We can now conclude that (Mt),.o is geometrically ergodic for i) there exists B < + co such that for all (n, s) E R × Rx+1

X < q,- by invoking the following result. EIIlM,+, - M,1121M, = (n, s) < B;
Theorem (Hajek [111): Let {W} be a sequence of random ii) for all , E (0, + Go), the drifts (c(n, n//,), e(n, n/,))

variables adapted to an increasing family of a-fields {F}. converge uniformly in 0, as n goes to infinity to (c(o,), e(,));
Suppose that Wo is deterministic, that { W, F} is exponential iii) the limit drifts (c(i), e( ,)) are differentiable on [0, + c),
type, and that for some e > 0 and a > 0 we have E[(Wt, I - W with (e(0), e(0)) = lim$ (c(0, s), e(0, s));
- e) I(W, > a) IF, - 0 for all t _ 0. Then for each value of iv) there exists e > 0 such that if c(0'o) = ,o e( o), then c(0,0 )
Wo the stopping time 7 = min {t > 0; W, :- a} is exponential < -6.
type. Then Mt is stable.

Define W = V(Mf) anda = Mmax {l, (1 + 3,)/33', (1 - Since bot. he new packet arrivals and the rows of the reception
3-y)/33}. If V(M) > a, then M E Uhf. From (24) and CO matrix have finite variance, it is easy to check that condition i) in
(V(M), F) is exponential type since A, is. From Proposition 3, Mikhailov's Theorem holds
we can apply Hajek's result to our system to conclude that =r E[1IM,+I-M11IM=(n, s)]
rmin (t z: 0, V(M,,,) : a) is exponential type for any initial
state. Since V(M) :5 a implies that Xt <.a and St < a/(l - =E[(X+1-X) 2 +(S+|-S)21M,=(n, s)].
3 3Y), it follows that T' = min {t _> 0, Xat - a, and Sj1 - a/(l
- 3y)} is also exponential type for any initial state, as well as r" Now EI(S, - S,)21M, = (n, s)] -. a2 + 3', and from (2)
= min {t > 0, X, 5 a, and S, :5 a/(l - 3y,)}. Hnice, it follows
from [14] that (X, S,) is geometrically ergodic, concluding the E[(Xt+|-X)IjM=(n, s)IrE[A2]+E[r,2IM=(n, s)].
proof of Theorem 4. 0

From CO' the variance of the number of successes is also bounded
IV. STABILTY PROOF VIA MtKHALOV's THEOREM EZIM, 0]

Mikhailov [19, Theorem 3] has recently found a powerful
sufficient condition to guarantee the stability of a Markov process (n)(A)l ( s)n-j
taking values on R + x R .This result can be used to weaken the s 1 eB.

sufficient conditions we imposed in Section III and obtain a much k-1 J

more simple proof of stability. However, the form of stability It follows directly from (16) and (17) that the limit drifts are
used by Mikhailov is weaker than the geometric ergodicity used in given by
Section III.

Let A be a discrete-time Markov process taking values in Y _ c(o) = X,- t(A
R", U(r) = {x E R":IxI I r), andr,(S) = min {t _ 0:M, E
SiMo = x}, i.e., rx(S) is the time it takes to reach the set S from e(#)-3+ (a-/3)eA ,
x. Then we say that the process M, is stable if there exist constants
c, and c2 such that E[r (U(r))] -. c, Ilxji + c2 for all x E Y. respectively, for 0 E [0, + co). Uniform convergence to the limit
Using this definition of stability we show the following result drifts follows immediately from the results given for the perfect
which is analogous to Theorem 4. state information case (Property 4). Alzo it is clear the I(x) is
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differentiable (see (6), where 0 :5 C,, -s n). Therefore, properties 1) One-Dimensional Kaplan's Condition: Consider the
iH) and iii) in Mikhailov's Theorem are satisfied. mo.el of Section IH with a control scheme p, = F(X,), and the

In order to check property iv) note that if iko = , then it Lyapunov function V(x) = x. To check Kaplan's condition, it is
follows from Cl' that enough from [27] to show that the downward part of the drift

-D(i) = S. kP,k is bounded below. For i a- I and I s k
c(0o) = #oe(oo). i we have

But, at that point, c(Oo) < 0 because of the choice of . There is ,-k , \
no other root of the equation c(,) = Oe(O,), and, therefore, Pij.k-= R ,F(i))1'JEJ~k+n.
propertyv) follows. To see this, note dto because of Cl ', c(,) = n-o k.,+,,F
4'e(O) for f * is equivalent to

After a change of variable, it follows that
X-tI(A,)_ eAQt_ ) X -t(A)

[3= ¢ i (i) F(i)J(I -F(i))1-J jZ X.n Z (k- n)Cj.k.
I - eA Rt-  i)  J .1 j1n0 k n+i

which is impossibl. if * because of C2'. (A-)
It can be shown [91 that mk(X) is finite for all nonnegative X and

[, and therefore the set of control laws defined by C ' and C2' is If (C,),, is bounded, then Kaplan's condition holds independent
nonempty. Actually, the set of control laws in Theorem 4 is a of the retransmission policy. Denoting by B, an upper bound for
subset of those in Theorem 5 because in Theorem 5 we can choose (Cn),zta, (A-I) becomes

= 1, in which case C2 is equivalent to Cl' and C1 is more
restrictive than C2' because X >2 mr(X) [91. J-1

V. CONCLUSION -- (i) 1- F(i)(l-F(i))i- J n0C

In this paper we have investigated the properties of decentral-
ized control algorithms for a random access channel with a-: .F(i)J(I-F(i))i-JC> -B. (A-2)
multipacket reception capability. By using the working hypothesis =
that the users are aware of the value of the backlog, we have
determined the best throughput achievable by any such protocol, 2) Two-Dimensional Kaplan's Condition: Consider now the
as well as a simple way to achieve it. The optimum throughput has multipacket channel with a general control algorithm (1). Then
been shown to be given by the maximum average number of (Xi, St) is the Markov chain of interest, and the relevant Lyapunov
successes per slot when the number of transmissions, per slot is function is V(n, s) = n. We prove again that Kaplan's condition
Poisson distributed. In the imperfect state information case, we holds provided that (C,,),,,t is bounded. From [27], it is enough
have shown that the same throughput achieved in the perfect state also in this case to show that the downward part T(x) of the
information case can be achieved by using in lieu of the true generalized drift is bounded below, with T(x) = y V(Y)<vxPxY
backlog, an estimate of the backlog computed at each station using (V(y) - V(x)). Given a state x = (i, s), we have
binary feedback, and we have used this estimate to derive a
control scheme which is optimal in the sense that it achieves the
optimal throughput determined earlier. This is true provided the T(x) - r Z P[X,, =i-r, S,,+= kX,, =i, S =s]
reception matrix verifies condition CO, which puts some restric- r-. Ik
tions on the number of successes per slot. By using Mikhailov's
result, CO can be replaced by the weaker condition CO'. In this Z _x
case however, geometric ergodicity was not ensured. Note that t= - X
the feedback empty/nonempty used in Sections 11 and IV may be
less than the available feedback in many practical situations, but which is, in the same way as before
no further information is needed: a ternary feedback would not
shorten the proof or achieve better throughput. .- i,

Finally, let us mention that one can easily modify the proof of T(x) - r , X, 1 (') (F(s))J(l-F(s,,,+,
Theorem 4 to show that a similar result nolds with the IFT access '- n= j0 .r+n
rule. More precisely, under a hypothesis paralleling those of
Theorem 4, one can build a control scheme based on a binary Z \ F l )  (
feedback empty/nonempty such that the Marko - ,ector (XI, S,) is F(s)J(l -F(s)
geometrically ergedic for X < supx,0 T(x). Using Theorem 3, it i. ' n-0 ,.n+t
can be seen that the maximum stable throughput is he same for this
both access rules when the new packet arrivals a.: -oisson sexpression is similar to (A-1), nd the end of the proof is the
distributed. same as in (A-2).
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Single-User Detectors for Multiuser Channels
H. VINCENT POOR, FELLOW, IEEE, AND SERGIO VERDU, MEMBER, IEEE

Abstract-Optimum decentralized demodulation for asynchronous only a subset of the active users and simply neglect the
Gaussian multiple-access channels is considered, It is assumed that the presence of all other users. In order to take advantage of the
receiver is the destination of the information transmitted by only one superior performance achievable by multiuser detectors, the
active user, and single-user detectors that take into account the existence subset of active users to be taken into account at the receiver
of the other active users in the channel are obtained. This approach Is in should contain all the users whose power is sufficient
contrast to both conventional demodulation, which is fully decentralized regardless of whether their messages are destined to that
but neglects the presence of multiple-access interference, and globally particular location.
optimum demodulation, which requires centralized sequence detection. In this pape, we consider the case of full decentralization
The problem considered is one of signal detection in additive colored non- where the receiv r is constrained to track and lock to the signal
Gaussian noise, and attention is focused on one-shot structures where of only one user, but unlike the conventional single-user
detection of each symbol is based only on the received process during its detector, is optimized to take into account the structure of
corresponding interval. Particular emphasis is placed on asymptotically multiple-access interference in making decisions. We consider
optimum detectors for each of the following situations: 1) weak several design approaches that can be used to optimize these
interferers, 2) CDMA signature waveforms with long spreading codes, structures depending on the amount of information that one ,s
and 3) low background Gaussian noise level. able to assume to be known about the signature waveforms

assigned to the interfering users.
1. INTRODUCTION This paper is organized as follows. In Section II, we will

first discuss the general structure of optimum decentralized
HE conventional approach to the demodulation of demodulators that simultaneously track and demodulate a

Icode-division multiplexed multiuser digital corn- group of D users from a total population of K users sharing a
munications is to demodulate each user as if it were the only common communications channel where D s K. We then
user in the channel. The multiple-access capability of such consider the structure of optimum single-user detectors (D = i
systems is thus achieved by using complex signal constella- I), and particularize to the case K = 2 to illustrate this
tions that exhibit favorable cross-correlation properties. (See, structure. The results of Section II are for general antipodal
for example, [1] for a description of conventional multiple- signaling formats In Section III, we turn to the development
access demodulation techniques.) However, recent work by of specific results for single-user demodulation of DS/SSMA
Verdu [2] has shown that substantial performance gains can be transmissiens. In this modulation technique, which among
achieved in coherent multiuser systems by using a receiver that coherent signaling formats is of particular practical interest,
takes advantage of the structure of the multiple-access interfer- each signature waveform consists of a sequence of chip
ence. For example, this approach can be used to alleviate such waveforms whose polarities are determined by a binary word
limitations as the near/far problem in the direct-sequence assigned to each user. The specific structure of the direct-
spread-spectrum multiple-access (DS/SSMA) format. The sequence format allows for the development of useful approxi-
performance gains realized by the receiver proposed in [2] are mations to optimum single-user detection which are asymptoti-
achieved by the use of simultaneous sequence detection of all cally exact as either the length of the spreading codes or the
users in the channel, a task that requires a centralized signal-to-background-noise ratio (SBNR) increases w:thout
implementation and a high degree of software complexity (for bound. We also show that (with K = 2) even in the absence
example, the decision algorithm required is a dynamic of any prior knowledge about either the spreading codes or the
program (DP) whose complexity is O( 2 -) where K is the timing of the multiuser interference, the optimum single-user
number of users in the channel). Since the implementation detector is not multiple-access noise-limited as the back-
costs of such fully centralized detection algorithms may be ground thermal noise level vanishes. This is in contrast to the
unacceptably high for many applications, and since network conventional detector, which can incur an irreducible error
security restrictions may not permit the distribution of all probability even in the absence of background noise. All of
user's signaling waveforms to all demodulating terminals, it is these results for DS/SSMA require only that the chip
of iqterest to consider demodulators that lie between these two waveform (which is usually common to all users in a given
philosophies of conventional demodulation, in which other network) be known. Thus, these techniques can be applied in
users' signaling waveforms to all demodulating terminals, it is secure networks where the distribution of one user's spreading
optimum demodulation, in which all users in the criannel are code to other users is Pot desirable.
tracked and demodulated simultaneously. The p. formance In Section IV, we return to general coherent signaling
results obtained in [21-[4] indicate that an attractive compro- formats tc consider the problem of optimum single-user
mise in practice is to use optimum multiuser demodultiors for detection in the presence of weak unlocked interfering users.

We model this problem by assuming that the multiple-access
Paper approved by the Editor for Spread Spectrum of the IEEE Commum- interference is multiplied by a small amplitude factor 6. We

cations Society. Manuscript received February 17, 1987; revised July 27, then derive an expression for the likelihood ratio statistic for
1987 This work was supported in part by the U.S. Army Research Office optimum symbol decisions on the locked user that is of the
undrr Contract DAAL03-87-K-0062. form of the conventional correlation statistic, modified by an

II V Poor ;s with the Department of Electrical and Computer Engineenng C-2 term involving signal cross-correlation functions, and then
and the Coordinated Science Laboratory, University of Illinois, Urbana, IL having higher order terms of order e4. The resulting locally
61801,

S. Verdu is with the Department of Electrical Engineering, Princeton optimum detector correlates the observation with a replica of
University, Prnceion, NJ 08544. the waveform of the user of interest, suitably smoothed to take

IEEE Log Number 8717473. into account the presence of multiple-access interference.
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II. OPTIMuM DECENTRALIZED DETECTION FOR MULTIUSER maximization of (2.3) with a dynamic programming algorithm
CHANNELS yielding a TCB of O(IA I)K. (See [2], [3] for details of this

Throughout this paper. we consider a received signal model analysis.)
of the form Unfortunately, for D < K, the decomposition of (2.3)

necessary for a dynamic programming solution is not possible
rt=S,(b)+n,, - o<t<c (2.1) because of the coupling among symbols in the expectation

cc < t < oo represents white Gaussian noise term. This means that maximum likelihood~sequence detection
wih eral ;-ei < t.V2 an wereesewhied ausial noise Is not generally computationally feasible (its TCB is exponen-ithe sperpositN o2, and where the received signal Sr(b) tial in the number of symbols per user) if all users' signaling

is the superposition of transmissions received from K separate waveforms are not known and locked. Thus, in considering
asynchronous users, i.e., decentralized demodulators in multiuser channels, we will

K ,M restrict our attention to algorithms which demodulate only a
S,(b) = Z F, bk(i)Sk(t - iT- 7k) (2.2) single symbol at a time, i.e., we consider one-shot detectors.

kI Ad We also will restrict attention to the binary signaling case, ink-I , - twhich bk(i) E I - 1, + 1) for all i, k. Extensions to general

where T is the symbol interval, bk(i) is the ith symbol of the alphabets are, in most cases, straightforward.
kth user, rk is the relative delay (modulo T) with which the In the sequel, we will consider the case of full decentraliza-
kth user's transmission is received, and Sk(t) is the signature tion, i.e., single-user detection, which can be modeled by the
waveform assigned to the kth user. (It is assumed that sk(t) is binary hypothesis-testing problem
zero for t e [0, T].) Note that (2M + 1) is the number of
symbols per user in the given transmission, and b denotes the H0 : r, = s, (t) + SI1A + n,, 0 <_s t : T
K x (2M + 1) matrix whose (k, i) entry is bk(i).

Suppose that we wish to demodulate some group of D users HI: r= - s,(t) + SmA + n,, O: t: _T (2.6)
from the total population of K users where D < K. For
simplicity of notation, we assume that these D users of interest where {n,; - o < t < CO} is the white Gaussian noise and
are labeled I-D. Thus, we know sj, • ' ", SD and zT, * ', To, where
and the maximum likelihood demodulator chooses a symbol K

matrix bD {bk(i); k 1, " _}.-. to maximize the SM A [bsk(t-rk+T)+b Skat-rk)), OtsT
log-likelihood function ' -2 k

k-2

2 * i (2.7)
2 r'S(bD) dt-- [S(bo)I2 dt

No  N . with bi andb denoting the kth user's bits in the intervals
[- T + rk,rk) and [7k, T + 7k), respectively. We also assume

+lg [ that the receiver is coherent with user 1 so that {s,(t); t E [0,
+log E p ) dt T]} is a deterministic waveform, and that each user's

signaling waveform is of the form

_l SA]2 dt]} (2.3) sk(t)=(2wk) 2 a (t) cos (wCt+Ok) (2.8)

where where w, is known. We assume that (wT/27r) is an integer
D M large enough so that integrals of 2w, components can be

neglected.
SDI(bo) = bk(i)Sk(t-iT-rk), - o<t <o Optimum (maximum likelihood/minimn d error probability)

k- I k- -M decisions for (2.6) are based on comparl..g the likelihood ratio
(2.4) to a threshold. With this in mind, we give the following result.

S11 SI(b)-SD(bD) (2.5) Proposition 2.1: Suppose that the phase vector of the
interfering users 0 = (02, ' - ", OK) is uniformly distributed on

and where the expectation is over the ensemble of all unknown [0, 2r)K- and is independent of bk = (bL M) k 2,,
quantities in V|, including delays, symbols, and (possibly) K, r = (72, ", T) and (ak(t), t E [0, T], k = 2, "', K).
waveforms. If the dependence of 11 s 11 on 0 can be neglected, 'then the

Note that, even if we ignore the complexity of computing likelihood ratio for (2.6) can be written in the following form-

exp L---lrp(t)a.(t) dt k-.2 j. A- (2.9)

exP 0 ~~it t E 11i Io((p(kj, r, - l)+ (bk, 7k)) 112) exp ( y, rkJ(bk, bir, 7 1~
k-2 ().2 )

the expectation in (2.3), the time-complexity-per-demodu- where the expectation is over the ensemble of bits, delays, and
!ated-bit (TCB) of brute-force maximization of the log- possibly waveforms of the interferiPg users2 and we use the
likelihood function is O(IA I D(2f+ "/DMIA IN where IA I is the notation
size of the symbol alphabet. Thus, urless som6 simpler 2(wk)1 / 2 T
algorithm can be found, simultaneous maximum likelihood Pk(bk, 7-k, e)=- ck(bL, , t-rk)
sequence detection of D users is out of the question from a No ' o k k

practical point of view. For the particular case of fully [rp(t)-eW 112
centralized detection (K = D), it turns out that a much simpler e a, (I)] dt (2.10)

algorithm can indeed be found. In particular, for this case, the For a waveform x = {x(t), 0 s t s T), jIxl12 denotes Jr x2(t) dt
expectation term in (2.3) disappears (since S'4 - 0), and the :1( ) is the modified Bessel function of the first kind of order 0, i e, lo(x)
remaining terms can be decomposed in a way that allows = 1/2r 12, exp (x cos 0) dO.



52 IEEE TRANSACTIONS ON COMMUNICATIONS. VOL. 36, NO. I. JANUARY 1988

2(w), k , b. t-k)rq(t)dt (2.11) 2 [/2Mb, O kIk. o0 [(rp(t)-2ewj12a1(t)
N0 o k-.2

T i(bk, bj, rk, ri) a*(bL, bR, t-r) cs2 (coCt+O))a.(b},b , t-rk)
No  o k k cos (Ok- wrk-O)-(rq(t)-ewl' 2 al(t)

• ai(bf, bf, t-rj) dt (2.12) sin (2wot+G,))a(b1, bR, t--rk))

r,,t)= -2r, cos (cot+O) (2.13) Sill (Ok-Wcrk-01) dt
K

rq(t)=-2r, sin (,ot + 01) (2.14) = Pk(bk, k, e) cos (Ok-wer-Ot)

ak (b, c, X)=bak(X+ T)+cak(X). (2.15) k-2

Proof.- The likelihood ratio for (2.6) is equal to the ratio -0bk(bk, "k) sin (0k- wor k -01) (2.19)
of expected values of conditionally Gaussian a priori densities where the last equality follows by neglecting the integrals of
where the expected value is taken with respect to all random the 2w, terms. Equation (2.18) is immediate from (2.19) and
quantities in S'fA; this is given straightforwardly by the result follows. 0

1 Note that the structure (2.9) consits of the single-user (K =

exp [- 11 r- s, Ilz  1) correlation statistic

LR 
-exp 

IIr+s'U 
2o /2 r (t)a,(t) dt (2.20)

,[ rI 1 2 Sl"]M used by conventional single-user receivers, modified by an
E exp I + s,, additive correction term which accounts for the other users in

. Lo N(2N 1 6) the channel. Note that the received waveform enters this
( j 1  2 tMA] (2.16) correction term through the sliding correlation statistics of

E [exp -.-- iSMAl+ (r+st, (2.10) and (2.11).
No 0  )The simplifying approximation in Proposition 2. 1, which

where, for functions x and y on [0, T], the notation (x, y) states that the energy of the multiple-access interference
denotes f ox(t)y(t) dt. The first ratio in the above expression process is independent of the carrier phases, is certainly
is readily shown to be equal to exp [(4(wt) 1/2/N 0) r jr  accurate when weT is sufficiently large and the normalized
r,(t)al(t) dt]. Now, neglecting the dependence of hIS" AhI on (i.e. unit energy) cross correlations between the interfering
0, we have for every b and T 1 users are low. We assume throughout this section and the

following one that this independence is valid. If such an
K /W -i )] approximation is not assumed, then it can be shown straight-

N, "rk bk bjrk, rs)  (217 forwardly thttemultiplicative correction term in the

No k2 No ..2 likelihood ratio (2.16) is equal to

E ""0 exp Pk(bk, rk, 1) cos cr4- k(bk, rk) sin ck - 1 rki cos (ak- 01) da2 ." dctg
k0 0 .2 - (2.21)

E 2..... 1'ep[Kk dC
E . exp I Pk(bk, 7k, --) Cos ak-Ok(bk, r) sin oak- Z , COS cos - ) ... dC (2

k-,2 J-2 -

So, it remains to show that for all (cr4, bk, rk, k = 2, • , K), Several variants of the general structure of (2.9) are of
we have interest and will be considered here. One such variant is that in

which the modulation waveforms of the interfering users
2r exp (r-ex,, S A )  dO2 ... dGK {ak(t); 2 5 k - K} are known, and the remaining unknown
0 L e A j -quantities in {sk(t); 2 < k - K} are all independent with the

NO )data bits and delays uniformly distributed in their ranges. In

K this case, the expectations in (2.9) reduce to
=11 o ((p(bk, rk, e)+ 1(bk, rk))111) (2.18)-2 E{(')) =(4)- E

To this end, we note that the following sequence of equalities (4 (Th- b -4K1

holds:

2 'lorjK-, E{(')tb', r} dr 2 ... drv (2.22)
-- or-es , S

MA)

where b' = (b2, "" , bK) and where the inner expectatior is

2-V2 K r over the amplitudes. Thus, the computation of this likelihood
2[ (r(t) - es, (t))wV2c(b , b , tW- 1 ratio is of exponential complexity in K. Moreover, there will

N k2 k be a further substantial computational burden in computing the
(K - 1)-dimensional integral corresponding to averaging over

cos (ct- rk + 0k) dt the relative delays 72, ..., g.
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- ' f . of practical interest, namely, when the number of chips is
large and when the white Gaussian noise level is low.

(0i o1 A. Optimum Single-User Detection for Long Spreading
Sequences

To study the large-N behavior of the likelihood ratio of
Proposition 1, we first define the following functions:

in [rp(t)-ew1'2 at(t)] (t-X) dt (3.2)

sr(- WO r,(t)O/(t - X) dt (3.3)

0and
Fig. I. Optimum single-user detector (K = 2). Replicas of a2 (+, +, - t)
andcz( +, -, -1) are generated by the blocks corresponding to the signal ge(X, 0) e(X) COS 0 - (X) sin 0 (3.4)
of the second user.

where the parameter e takes on, the values + I and - 1 and g,
Fig. I illustrates the particularization of the demodulator is abbreviated as g+ and g-, respectively, in the remainder ofFig I lusrats te prtiulaizaionof he emoulaorthe section. Now fix r E (0, T) and suppose that n E {lI,

derived in Proposition 2.1 to the two-user case. Note that the t. N} is such that (n - 1) T, < " < nT,. Then define
quadrature component of the input is used and that convolu- -
tions (required to generate (2.10) and (2.11)] and nonlinear - (b Ckj-n j-n ! 0
memoryless operations are also needed. dkJ= j-n_>0

For K > 2, the delay integrals do not appear to be - b ckj-n+N j-n<O 1=0, "', N (3.5)
obtainable in closed form. However, even if they could be, the and notice that g,(r - T + iT,, 0) = 0 for i _< N - n -

exponential (in K) complexity of Eb, shows that optimum and g,(r + iT, 0) = 0 for i ; N - n + 1 because ,(t) = 0
one-shot single-user detection in a K-user channel is at least as for t E [0, T]. Then it follows that
computationally burdensome as centralized simultaneous se-
quence detection of fully locked users. However, one-shot NO
single-user detection does not require tracking phases, delays, 2w/ [Pk(bk, r, e) cos 0- 'k(bk, r) sin 0]
and amplitudes of all users, and thus may be preferred if these k

quantities are not stable for relatively long periods of time. N-i
Moreover, and perhaps more importantly, Proposition 2.1 = Y ck,[b~g,(r- T+ iTc, 0) + bg.(,r+ iT, 0)]
also applies to situations in which the modulating waveforms - o

of the interferers {ak(t); k = 2, • • ", K} are not known. This
situation is the norm foc the noncentral nodes in many practical =ckN.b~g,(r-nTc, 0)+CkN_.bRge@(-nT +T, 0)
radio networks, and thus the centralized detection algorithm of
[2) cannot be applied to such cases unless the receiver N-i
estimates the unknown signal cross correlations. Furthermore, + dkige( " + (i-n)Tc, 0)
as it is shown in Section III, an important reduction in the i-i
complexity of computing (2.9) results from the modeling of
the modulation waveforms of the interfering users as being N
signature sequences. =1 dkg,(r+ (i-n)T,, 0) (3.6)

III. SINGLE-USER DETECTORS FOR DS/SSMA CHANNELS

In practice, one of the most important types of code-division and thus, the distribution ofk((p (bk, 7k, e) + .b,(b4 , Tk))/
2 )is the same modulo T, when Tk is uniformly distributed.muTiple-access sostems is direct-sequence spread spectrum Let us now consider the particular case of a single interferer

Ths corresponds to the particular case of the model (2 1), K = 2 which may also be used to approximate the situation in
t2.2), aind t2.8), n which the kth user's signature waveform is which we have a single dominant interferer. In this case, the
of the form correction term of the likelihood ratio is equal to

ak(t)=5- cki'(t-iTc), O:5t<T (3.1) E exp Y, d2ig+(iT/-X, 0) dO dX
whr 0k, O__ i ( -d (3.7)

where Ck}..  is a signature sequence of binary (± 1) digits, E exp (fi 2 Z d2ig_(iT,- X, ) dO dX
the chip waveform Pk is nonzero only on [0, T], and the chip 0 0 No i.0
duration T, is given by T, = TIN. In many DS/SSMA where the expectation is over the independent and equiproba-
multipoint-to-multipoint channels, it is frequently reasonable ble sequence d2, E { - 1, 1 }, i = 0, - • -, N. The integrands in
to assume that user 1 knows the chip waveforms of users the numerator and denominator of (3.7) are products of
2-A, but not the specific signature sequences they employ, hyperbolic cosines which do not lend themselves to further
Since these sequences are usually chosen to be pseudonoise simplification. However, if N (the number of chips) is large.
sequences, it is reasonable to model them (from the viewpoint the distribution of the discrete random variable Z-/ 0 d2,g,(iT,
oi user 1) as independent sequences of independent, equiprob- - X, 0) approximates the normal cu,'ve, and further simplifi-
able binary digits. In this section, we apply this model for the cation of (3.7) is possible. To justify this approximation, we
interfering users- in the likelihood ratio formula of Proposition show that for each 0, X and each realization of
2.1. As we will see below, this affords a much more
manageable form for the likelihood ratio in the limiting cases x(t) = (r,(t) - ew,'2at(t)] cos 0-rq(t) sin 0
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such that sup {Ix(t)It E (0, T)} < co, the following N
triangular array of random variables3 ,  D(X) Z 2 (iT -X) (3.16)

"rn and t-0
i"tur x(t-X) dt i=1, n (3.8) I((I 1)P0(X)=2 Z (-.17)

satisfies the Lindeberg-Feller condition (e.g., [5]) i.0
This structure is illustrated in Fig. 2. Note that there is

a E[(,e)Il,, > e,]=0 forevery 0 considerable simplification in this structure over that of Fig. I."* . or e > In particular, each of the -+" and "-" channels involves
chiprthatched filtering of the in-phase and quadrature compo-

(3.9) nents followed by chip-rate sampling, quadratic accumulation.
where e E[S,".1  j. To heck (3.9), first note that memoryless nonlinear transformation, and integration over theoffset X. This latter operation can be implemented in parallel

n n form by decimating an M/T-rate sampler (rather than al/T.
lim , ,%= im - x 2(t')T2/n 2  rate sampler) where M is the number of points taken in the

T-,. T. numerical computation of the integral.
Further simplification of the correction term (2.9) is also

= 11xll 2  (3.10) possible in the case K > 2 by using the Gaussian approxima-tion. We can obtain an expression similar to (3.14) where thewhere t , G ((i - l/n)T, (iT/n)) and the first equation in tegration is now over the hypercube [0, TI-i. Analogously
(3.10) uses the mean-value theorem on the integral of (3.8). to the case K 2, for each 0 = (02, • J • ') and " = (72, ",
Therefore, for every e > 0, there exists no such that for all 1 to), the distribution of
-s i 5 n and n > no, K

n~~~~~ ~ ~ >6(III- )ZPk(bk, 
7 k, e) COS Ok -I'k(bk, rk) sin

I{l,>6e,}< " ( 2 . (3.11) k.2 k-iI T ok. 0 - F ]Pkj b , b i, rk, T .0
But for each t > 0, we -aa find n t i" 'hat for n > nt, we J.2
have is approximately Gaussian, and since lkj is un-orrelated with

Pk, k, pj, and ,, both the numerator and the denominator of
ST= the correction term in (2.9) are approximated byT SU.,> _<. sp 2 x(t)l > A = 0. (3.12) K -I (2 .arke

Hence, only a finite number of terms on the left-hand side of 10.Tcl "d K k
(3.9) are nonzero, and since lim,-. .* e = 0, (3.9) follows. p r k k

If o cos 0 - ik sin0 is a Gaussian random variable, then it is • exp- 2
straightforward to check that ,.2

K
Elo(P +VT2)=exp G (E[P 2 + IE[21)) k-2

Now, Eexp (-Kk 2 skt -k(bk, b., rk, rj)) depends only on

r. and on the chip waveform, and since if X - N(0, a), then
10 I (E[p 2] -E[0 2])2+I E2[p] . (3.13) E exp X = exp a2/2, we have

( 764E exp - k r, (b, b p, T, T')
Hence, using the Gaussian approximation' to the distribution x j-..2
of S. 0 duig,(iT - X, 0), the correction term in (3.7) reduces .................
to

0/ 0 (3.14)

where

.= (exp E [ .Z E kj(bk, b,, 7-k, -',)Ireo 0 ) = e U T ( - X ) (3.15)( 2 R - 2

For the sake of notational simplicity, here we consider the case of a K k I

rectargular chip waveform. In this case, rNf = dug,(iT, - X, 0). =exp ( 2 Er2 (b,, b,, 1
k, r,)

IIt should be noted that the use of a central-limit theorem here is quite k2 J-2 /

different from the Gaussian approximations used in many previous analyses of
conventional single-user receivers. Here, we do not claim chat the multiple--i Wk ( Irk-7 1I+(Tc- 1 rk r1))]access interference is asymptotically a white Gaussian process, however, we J rI exp
do show via the Lindeberg-Feller condition (3.9) that the decision statistics in k.2 j-2 N2
(3.7) arc conditionally Gaussian random variables as the number of chips per
symbol goes to infinity. (3.18)
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~Fig. 2. Correction statistic for single-user detcctor with long spreading

sequences.S

where the last approximation follows by assuming that #,(t) = No - 0.5 Hence, rather than using (3.19), we must take the
l/T /2 for t E [0. T'j and by neglecting an 0(1/N2 ) term in limit as No -" 0 of the original likelihood ratio (2.9). As in the

Sthe exponent. Hence, the overall correction term is approxi- previous analysis, w will first focus attentton on the case of a
mately equal to single interferer (K = 2).

.. j (wk ( ,(r))) to (\ I+TkNrk)+g.r'

201. T0?C k. NOexpNEAR

k-I r 2 w, 4k- i_ + ( - +k

j-2 ~ d 2 .. dTK(3.19)

fl exP L-* - dr2 '".dr,

Notce hatth tem tatcouples the integrals in (3. 19) is Since the spreading codes of the interfering users are
asymptotically independent of r as N . eHence, (3.19) modeled by the single-user receiver as equiprobable and
approaches the product of K - 1 (3 14)-like terms (substitut- indepeenet binary sequences, the correction term of the
ing w2 by W). Thus, in this limiting case, implementation of likelihood ratio ts given by (3.7) and the log-likehood ratio is
the multiuser correction term in the likelihood ratio involves (except for a positive multiplicatie constant) equal to

the implementation of only one chip-matched-filter/quadratic- N

cmuat eton singlee inefee (Ktil =vrgn 2).el, I

for each different value of wk. Fig. 2 shows an 2 r

setonfllwd ymutpl veain hanls ) (t) dt (70

implementation of the correction statistic to be added to the -
output of the single-user matched filter in the case of a single £rCl ° *2r 2w//2

interferer. The general structure is the same, except that the • log E x " d'+(T -X, O)1 dO dX
memoryless nonlinearities output a process for each interfererEex g\L- 1

which is then passed through a separate logarithmic integrator.
.Optimum Single-User Detection for High SBNR w- N0  log " Io

We now turn to another limiting case of the single-user
detector for which a simplified form of the likelihood ratio (2w!/ 2 N
exists, namely, the case when the power spectral density of the •Eexp~ z. ~ d,,g_(iTc-X, ) dO dX (3.20)
additive Gaussian noise goes to zero. In the above case, we ~ N

N20

saw that when the rest of the parameters are fixed, we can use
a Gaussian approximation as N -- c. However, for fixed N, This is due to the fact that as the variance goes to infinity, the error
tjie error between the expected values of the exponentials, between the distributions accumulates on the tails (the true random variable is
~cording to the true and Gaussian distributions, diverges as bounded) on which the expected value of the exponential largely depends.
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where the expectation is over the independent and equiproba- bs(t) + S"A(t), b E { - 1, 1 }, then
ble sequence d2j E ( -1, l},i = 0, .. , N. On taking the
limit of the correction terms in (3.20), we obtain sgn [2 r(t)aF(t) dt+(w2/wV) 2

lrn /2 log\o-O 21O / N1I ~sup Z 1g9,(iT,- ', 0)1-(w2/w )112

E Eexp \----= d2,g,(ir, - X,0) d6dA

sup Y ig=(iT,-X, 0)1 =b (3.23)

= i log efl0.2rl
N0-0 WIV o ,0

with probability 1.
N 2/NO N0 /2 Proof: See Appendix.

exp (W 2 
Zge(iTc.-. X, 0)1) dO d In the general case of K > 2 users, the log-likelihood ratio

is proportional to (cf. (2.16)]

T

- N (N+ 1) log 2 2v.:/2  rp(t)az(t) dt
No-0 2%vI

IN

- log sup exp (wV2 Z jg(iT- X, 0))
W112 r 12j• Eexp - SIA112+ 2(r-si, SM1)3 dO dr

I LNo Noi
=(w 2/w,)o 2 Sup I g(iT-X, 0)1. (3.21) N.....

sE-0.r 2 olog I I 10,2r1

Therefore, in the limit as No -" 0, the optimum single-user E exp [I + (r+s , s dO dr
detector for K = 2 in the case of unknown interfering codes No No
compares the test statistic

t3.24)
r u where the expectation is over the independent sequences d =

2o rp(t)ai)d+(w2/w)l'2 sup 1 jg+(IT-X, 0)1 {dk, E {-1, 1}; i = 0, .", N, k = 2, . , K}. As in
X)E.TCJ o-0 (3.21), this expectation is dominated as No -" 0 by the atom
O t0.2T1 corresponding to the largest integrand, i.e.,

N d* E arg maxd Qe(d, r, 0) (3.25)
-(w 2/w1 )1"2 sup Ig_(iT -X, 0)1 (3.22) where d

Xej0.r'l 1.0
6EIO.2ulIlSM1)I2(.6 £,(d, r, 0)=(r-es,, SA'I(d)) -- I iSAfA(d)I1a (3.26)

to a zero threshold. Note that as might be expected, (3.22) is 2

also the limiting form of the generalized likelihood ratio test or and
maximum likelihood detector (see Helstrom (6, p. 291], for
example). N¢ K

We now investigate the error probability of the test in (3.22) SA (t, d) Z Z dki(2 IV) 2'(t- (i- 1) T,- Tj
when No = 0. It was shown in [4] that when the delays, i-o k-2

phases, and waveforms of all users are known, the fully
centralized optimum detector achieves perfect demodulation Cos (wct + Ok- wrk). (3.27)
with probability I in the absence of background noise. This is Since there .,. 2 K"Nv 1) possible sequences, it is necessary to
a nontrivial result, as is illustrated by the behavior of the find an efficient way to carry out the maximization in t3.25).
conventional single-user detector which becomes multiple- But (3 26) and (3.27) have the same structure as (2.3) and
access limited, i.e., the limit of its error probability as No - 0 (2 4), respectively, so we can apply the results of (2] to carry
is nonzero for sufficientl) powerful interfering users. How- out the maximization of (3.25) with linear complexity in N.
ever, as in the present case, the conventional detector does not On taking the limit of (3.24) as Vo - 0, we obtain the test
have access to the delays, phases, or signature sequences of statistic
the interfering users. So, the question arises as to whether an
optimum single-user detector can achieve error-free perform- -rance regardless of the energies of the interfering users without 2W/ 2  (() di + sup f+*(r, 0)-sup t2*(r, 0) (3.28)
knowledge of those parameters. The answer, in the two-user 0 ,e .e
case, is given in the affirmative by the following result which
does not put any restrictions on the signature sequences. where 12*(r, 0) = 2l(d*, r, 0). Even if these quantities are

Proposition 3.1: Suppose K = 2 and w, > 0. If r(t) obtained through efficient dynamic programming recursions
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as in [21, the main computational burden of (3.28) is the where
maximization over [0. T,]K-I and (0. 27r] '-i, which imposes
severe limitations on its feasibility for even a moderate number [ /2'
of users. However, note that, in performing the maximization, D,() =E exp 1- ]s,+6nif
the receiver is essentially acquiring the chip timing and carrier L 2a2

phases of the interfering users. Thus, in practice, it would
normally be unnecessary to undergo a full search for the -2 (s (+1fit)dr) i=0, 1 (4.4)
mtaximizing r and 0 in each symbol interval since these 1p
quantities will change little from symbol interval to symbol where the expectation is over the ensemble of sample funtions
interval. For this reason, (3.28) might be reasonably efficient of ti e t p E [ta,, tfn is
to implement in approximate form. In order to derive (4.2), we take the Taylor series expansion
IV LOCALLY OPTIMUM SINGLE-USER DETECTORS WITH WEAK of (4.3) around the origin. Since fit is a symmetric random

INTERFERERS variable, it follows that D(-e) = D,(c), and hence the odd

We have seen in the preceding sections that in multiple- terms in the Taylor expansion of D,(t)J,.o and log D,(),.o are

access environments with many users, the complexity of equal to zero.

optimum detection is increased considerably (over centralized Using the fact that 1r7l < B a.s. and the Schwarz

reception) when the unwanted users are unlocked. This is true inequality, it follows that the expectation of every coefficient

een without sequence detection and regardless of whether the in the series expansion of the exponential in (4.4) exists, and

interfering waveforms are known. However, one of the mainI incentives for the study of optimum decentralized detectors is e 1 2 E fit d2
the situation in which all or some of the interfering users are D2()=D,(O) [ +- E ft(r t-s') d)
comparatively weak, so that it may be impractical to provide 2 Lu ,
reliable synchronization for them. The objective of this section
is to derive locally optimum (up to a third-order approxima-_1 2l E4 (4.5
tion) decentralized detectors for reception in the presence of - Ilfllj .O( .
weak unlocked users. As we shall see, such detectors can be

viewed as versions of the detector that would be optimum Now, since log (1 + x) = x + O(x 2 ), we obtain
without the weak interferers, modified to be robust against
small deviations from the nominal white Gaussian noise D =( g E ft (r,-S dt
statistics caused by weak multiple-access interference. As in Dl(o =log D0(0) a2 rPi
the preceding sections. we consider both the case in which the
waveforms of the interfering users are known, and the case in
which they are coded with binary signature sequences un- 1 r! -st )  +O(f 4) (4.6)

known to the receiver. We will see here that the locally tPoptimum version takes care only of the nonwhiteness of the

multiple-access noise. and (4.2) follows straightforwardly. 0
The approach we follow to derive locally optimum decen- Notice that the stringent condition 11fi 1 < B ta.s.) allows a

tralized demodulators is to obtain an asymptotic form of the straightforward proof of Lemma 4.1 and is satisfied in the case
log-likelihood ratio for signal detection in contaminated white in which we are interested, namely.
Gaussian noise given by the following result.

Lemma 4.1: Consider the following pair of statistical M C 1

hypotheses: ti bk(i)sk(-iT-rk); bA(i) E {-1, I}.i: -,M ki-D!i

Ho: r,=s°+Ef,1+n, t E [tP, tf] (4.7)

HI: rt=s+efi,+n, t E [tp, tf 1 (4.1) If the waveforms {ak(t), k = D + I, . K} are known by
the receiver, then the autocorrelation function of f, with

where s' and so are deterministic finite-energy signals, {n} is support in .F12 (for M = co) is equal to
white Gaussian noise with spectral height a2, and {ft, t E [to,
tfl} in a symmetric random process such that 11f1ll < B (a.s.) ,I K

for some constant B, and whose correlation function is C',=cos (M(t-X)) F wkRk(t-X) (4.8)
denoted by C,,.\ = E[Pfixj, (t, X) E [to, tf12. Then the log- k-D+1

likelihood ratio for (4.1) admits in the following expression: where

log LR (e) = -2 SS)I I rak(s-t)ak(s) ds. (4.9)

If the waveforms of the interfering users have the form in
1S (rt-s !s"'1 dt±0( 4 ). (3 1) and the code of each user is unknown by the receiver and

2 j 2 assumed to be equiprobably distributed among all {- 1, I}
(4.2 s-uences of length N, then the autocorrelation is
(4.2)

-MA

Proof.- Using the Cameron-Martin likelihood ratio for- L cos (wQ- X)) wkT(t-X) (4.10)

mula, we obtain k.D+.

DI (e) where the autocorrelation of the chip waveform is denoted by
log LR(e)(=log (4.3) Q(t) = r (s)kI(s - t) dt.

L ( o(E) The one-shot single-user detector can be obtained readily
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from the result of Lemma 4.1. Since the signal of user 1 is been shown that this detector (which assumes knowledge of
antipodally modulated, we have only the chip waveform and energy of the interfering user)

achieves perfect demodulation in the absence of Gaussian
sl-sO=2v2-w a,(t) cos (w t+01) noise regardless of the energy of the interference, thus

avoiding the multiple-access limitation that plagues the con-
ventional receiver. Using dynamic programming, the single-

and (4.2) becomes user detector can be implemented in linear time in N;

4 ls T however, its main computational burden is the maximization

log LRr rp(t) over [0, TjK- I and [0, 27r]K'I needed in the correction term.
N o Using an asymptotic form of the log-likelihood ratio for

signal detection in contaminated white Gaussian noise, we
1K r have derived locally optimum detectors up to a third-order

aI(t)- w a()Rk(t-X) dX dt approximation in the amplitude of the interfering users. The
k 2 locally optimum one-shot detector has been shown to be a

+ 0 max 2).single-user correlation receiver which uses a smooth replica of

+0 (max wi). (4.11) the signal of interest It has been shown in [3] that this
k>i approach can be generalized to the case of partial decentraliza-

Hence, the locally optimum one-shot single-user detector is tion (D > 1), resulting in robustified versions of the
a ,.o ventional ,.orrelation receiver in which al(t) is replaced centralized D-user receiver, which may offer substantial
by al(t) - (1/NT) Ek.2 w, ;o ai(X)R(t - X) dX, t E (0, computational savings over the optimum K-user receiver.
T], i.e., the pseudosignal is the output in [T, 2T] of a causal
linear filter, driven by al(t), and whose impulse response is APPENDIX
equal to 6(t- T) - (I/NoT) S wkRk(t- T). If the PROOF OF PROPOWITION 3.1
signature sequences are unknown, the impulse response is Ws(t
- T) - (I/NoT) Sk wk'J(t - T), which amounts to a We assume that the bit transmitted by user I is b = 1, the

mild smoothing of the signal replica of the user of interest, proof being identical in the antipodal case. For notational
The locally optimum detector that locks to D of K users is, convenience and without lost of generality, we suppose that

in fact, a generalization of this conclusion. Using Lemma 4.1, the relative delay of the interfering user is 0 < r2 - T,; then it
it can be shown (see [3, ch. 5] for details) that the locally follows that
optimum D-user detector is a centralized detector whose
correlators use replicas of the unmodified waveforms of the a(bL, bR , t
users of interest. However, the input is processed by a causal 2 2 t 2 )=4dN'(t-iT + X2) (A.1)
filter that whitens the interference due to unlocked users, and 1-0
whose impulse response depends on the autocorrelation where X2 = T, - r , do = c21v- 1bL, and di = c2.bR fori =
function and signal-to-noise ratio of each interfering signal. 0, N - 1. Let 3 = 01 + W,72 - 02; then it is easy to show that
This requires a modification of the DP algorithm to account
for the intersymbol interference introduced by the prefilter, 'r

and results in a complexity of 0(22D) as opposed to 0(2D) for rp(t)a (t) = W 112 + W1 2 COS
the corresponding algorithm that neglects the additional K - 0
D interferers. t

V. SUMMARY 0 2( , 2' 2) (A.2)

In this paper, we have obtained decentralized single-user
detectors which take into account the presence of interfering g,(iTc- , 0)= w '2 cos (0 +1)
users. The general decentralized demodulation problem is one
of sequence detection in additive colored non-Gaussian noise, ( bR t- 2 ) (t-iT +X) dt (A.3)
and results in nonlinear detectors whose decision algorithms j0 °z 2( 2'

do not admit recursive forms and hence are more complex than
their centralized counterparts. Important reductions in com- and
plexity occur when attention is focused on one-shot single-user g_ (iT,- X, 0) = 2wi 2 cos 0
detertors.

The general form of the single-user likelihood ratio obtained r
in Proposition 2.1 is equal to the single-user likelihood ratio " a(t(t-iT,+X) dt +g(iT-X,0
affected by a correction term which depends on both the in- 0
phase and quadrature components of the input. Both the case
where the baseband interfering waveforms are known and the We show now that
case where they are coded by an unknown signature sequence N
have been studied. sup Ig± (iT: - X, 0) =w2/2. (A.5)

Under the assumption that the assigned waveforms are X0. -0
signature sequences with N chips per bit, we have obtained 6EI0.271

limiting forms of the correction term for N . I and for No = To that end, using (A. 1) and (A.3), we obtain for every X E
0. In the first case, the correction term depends on the received
waveform only through the functions Z.(X), ,(X), and 0-(X)
which represent the 12 norms and inner product, respectively, N

of the subintegrals of an N partition (with offset X G [0, TI) sup Ig+(iT-X, 0)1
of the in-phase and quadrature components of the received eLO.20,21 j.

noise process under both hypotheses. The correction term
when No = 0 is best illustrated in the single-interferer case w i r
where it is obtained through the maximization over the relative = 2 (bl, 0, to
phase and delay of the 11 norm of the above subintegrals. It has 10o
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Ho,. 1.0
W 1/2 o j dj(t-jT,+Xz)I(t-iTc+X) dt cos (0+0)1 co +(t-iT+X) dt

-0 J. 0 i,,,0

I , ( o+ W2bL,

:5jV 2 0 iT + X) dt 0 +2 22 tos -0r)4 ~ 2 )

22 o (t-jT,+2) 1i((t-T)
10 /o 0 cos ( 1 a t 2 (t + -iX) dt

w whr /2 t l t 2(t njT s dt from 
0 

thet S h0r
=nqaiynrmoheatosi2 jos ((+)+4wtt2w / (

00 +s ci t - T (X) I t) 4 s r/2 ( Csos Cos a (0) + ( r at(t)odt blb, we can dnt.o •0 2 (2/3 t- 2) dt]
where the last two equations follow from the Schwarz(A9
inequality and from the relationship Jor,• (412(t + S) + 4,2(t - A9

7", + s)) dt = )r', 02(t) = 11N, 0 <s s <s T,, respectively. Since J~or at(t)0e2(bL, b0, t - T2) dtt :- 1, we can denote t r

But the right-hand side of (A.6) is achieved when X = X2; aj(t)Q2(bL, bR, t - r2) dt = cos c, and using (A.9), the
hence, (A.5) follovs. Consequently. in order to show that the right-hand side of (A.8) can be lower bounded by
sign of the log-likelihood ratio is positive, one has to prove
that 2w+w 2+ w/w2 T 2aj(t)o2 (bL-, bR, t- r2) cos 3 dt
2V, + I + IW1/2W1 2  2at(t)o12(bL, bR, t-r2)

2 0 -2 I o (2w:' 2 a,(t) cos 0+

I 
i -i - O

cos 3 dt-w2'12 Z jg_(iT,-X, 0)1>0 (A.7) .1 2(bL, bR, t- 2) cos (0+3))'(t-iT,+X) dt

1forall X E [0, TcjandO E [0, 27r1. Using (A.3) and (A.4), we _2w + w 2+2wl/ 2 cos ce cos3
obtain

-1w 2 (4w, cos2 0+ w 2 cos 2 (0+13)r
2w, + w2+ wv '2

IV
t '
1 2at(t)oi2(bL, bR, t-T 2 ) cos13 dt +4w/w1/2 cos 0 cos (0+13) cos a) t /2. (A.10)0 2- 2

1/2 /2

Now, since 2w, + w2 + 2w: w.' cos acos/3 > 0, the sign
IV /of the right-hand side of (A. 10) is equal to the sign of,=ow1 g~T-..) (2wt++2 'w' 2'"t/ c 13

2'Z_i.0X,0 ( w, 22W /,W21 2 COS C, COS 03)2

/ IV 2 - [4 w, w2 cos2 0 + w 2 cos2 (0+13)

=2w + ,+ " 2W1 2 +4w, wt,/wV 2 cos 0 cos a cos (0+13)]

* 2a t(t)o:2 (bL, bR, t-r ) cos 3 dt +4W 2W '2  2  C os c os ) ]

o02 =(2wt + 2 w t2 wt/2 COS a COS 03)2 +4w, w2,(l -cos2- 0)

- + w(1 -cos 2 (0+ 3))+4 4 w /2 ,'IV1/2

" 0 (co• cos a [cos 3-cos 0 cos (0+13)]
a2(bl (w+2w t 'w21 2 Cos a Cos 824~,sn

* az(b2, bR, t- 2 ) cos (0+03))t(t-iT,+X) di . =(2w ,,2t,,, oB)+4wtw2 sin-

(A.8) + wsin (0- 3)+4w2w' 2w '2 sin 0 sin (0+O3)cosa
+2w t w"2 cos xo/)

The last term on the right-hand side of the above equation =(2IV, /2 OSCOS 1)2

'an be bounded as follows: +(w2 sin (0+ 0) cos a + 2,/wt w sin 0)1

c i(2w:12at(t) cos 0+ wt 2 a2, b, b -r 2 ) +(w 2 sin (0+3) sin a)2. (A. 11)
0. 2 2 72) Therefore, we have shown that (A. 10) and, consequently,

the left-hand side of (3.22), are nonnegative. Moreover, the
' cos (0 + 3)) ,(t- iT,+ X) dtI right-hand side of (A. 11) is equal to zero only if

,v 12w' 2a,(t) cos 0+ W,'2 2(b, bR, t-_ 2) 2w,+2w/2 w2/2 cos cos 3=0, (A.12)

,-0 but since3 = 01 + wc2 - 02 is uniformly distributed, (A. 12)
occurs with probability zero if w, > 0.

- cos (0+A3)l-I'$(t-iT+X)I dt REFERENCES
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Near-Far Resistance of Multiuser Detectors in
Asynchronous Channels

RUXANDRA LUPAS, STUDENT MEMBER, IEEE, AND SERGIO VERDT, SENIOR MEMBER, IEEE

Abstract-We consider an asynchronous code-division multiple-access problem and its ubiquity in networks with dynamically changing
environment In which the receiver has knowledge of the signature wave- topologies (such as mobile radio), its alleviation has been a tar-
forms of all the users. Under the assumption of white Gaussian back- get of researchers in the area for several years. However, success
ground noise, we compare detectors by their worst case bit error rate has been very limited and the only remedies implemented in prac-
In a low background noise near-far environment where the received en- tice have been to use power control or to design signals with more
ergies of the users are unknown to the receiver and are not necessarily stringent crosscorrelation properties, which as we have noted, does
similar, not eliminate the near-far problem.

Conventional single-user detection In a multiuser channel Is not The viewpoint of this paper is that the near-far problem is not an
near-far resistant, while the substantially higher performance of the op- inherent shortcoming of DS/SSMA systems, but of the conventional
timum multiuser detector requires exponential complexity In the number single-user detector. The optimum multiuser detector was obtained
of users. Wz explore suboptimal demodulation schemes which exhibit a in [1] and was shown to be near-far resistant in the sense that a
low order of complexity while not exhibiting the Impairment of the con- (very good) performance level can be guaranteed regardless of the
ventional single-user detector. Attention Is focused on linear detectors, relative energy of the transmitters. The optimum muliiuser detector
and It is shown that there exist3 a linear detector whose bit-error.rate consists of a bank of matched filters and a Viterbi algorithm whose
Is Independent of the energy of the Interfering users. Moreover It is complexity is exponential in the number of users. In decentralized
shown that the near-far resistance of optimum multiuser detection can applications (where each receiver is only interested in demodulat-
be achieved by a linear detector. The optimum linear detector for worst- ing the dato sent by one transmitter), it is possible to drastically
case energies is found, along with existence conditions, which are always reduce the ct .nplexity of the optimum receiver t(without comprorrus-
satisflid in the models of practical interest. ing performance) by neglecting all but the comparatively powerful

interferers. However, in this paper we propose a receiver (which we
refer to as the decorrelating receiver) whose complexity is only lin-

I. INTRODUCTION ear in the number of users, and whose bit-error-rate is independent
T H near-far problem is the principal shortcoming of current of the powers of the interferers at the receiver. Moreover, the decor-

radio networks using direct-sequence spread-spectrum multple- relating receiver achieves optimum near-far resistance (in a sense

access (DS/SSMA) communication systems. Those systems achieve to be defined precisely in the seuel). The only requirement is the

multiple-access capability by assigning a distinct signature waveform knowledge of the signature waveforms of the interfering users, and,
to each user from a set of waveforms with low mutual crosscorre- in particular, no knowledge of the received energies is required, in
lations. Then, when the sum of the signals modulated by several contrast to the optimum receiver.
asynchronous users is received, it is possible to recover the ifor- This paper generalizes the results obtained in [71 in the case of
mation transmitted by correlating the received process with replicas synchronous code-division multiple-access channels. Other recent at-
of the assigned signature waveforms. This demodulation scheme is tempts to derive detectors for multiuser channels include [9]-[l 1].
conventionally used in practice, and its performance is satisfactory if The multiple-access channel model considered in this paper is

two conditions are satisfied: first, the assigned signals need to have spelle out in Section II, as well as the general structure of .the
low crosscorrelations for all possible relative delays between the data proposed detector. In Section III, we present the performance mea-
streams transmitted by the asynchronous users, and second the pow- sure of interest, the near-far resistance and we show that the near-far

ers of the received signals cannot be very dissmular. If either of these resistance of the optimum multiuser detector can be achieved by a
codtos sntfufle, hnte i-rorrt ndteatiamn linear detector (the decorrelating detector), which is explicitly ob-conditions is not fulfilled, then the bit-error-rte and the anujamnng tined in Section IV, as well as its implementable version as a linear

capability of the conventional detector are degraded substantially. The tinedin Section V ais mp meral verson s alereason why system performance is unacceptable when the reeived time-invariant system. Section V gives a numerical comparison of the
eriesn ae i goode(i e wuaio therecina error probabilities of the decorrelating receiver and the conventionalenergir are dissmlar even wth good (.e., quasorthogonal) sgnal receiver in a scenario of practical interest.
constellations, is that the output of each correlator or matched fil-
ter contains a spurious component w!;ich is linear in the amplitude c
of each of the interfering users. Thus, as the multiuser interference II. MUITUSER COMMUNICATION MODEL
grows, the bit-error-rate increases until the conventional detector is Let the receiver input signal be
unable to recover the messages transmitted by the weak users.

Due to the severe reduction of the multiple-access capability and r(t) = S(1, b) + n(t) (2.1)
the increase of vulnerability to hostile sources caused by the near-far where n(t) is white Gaussian noise with power spectral density 72

and
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cations Society. Manuscript received March 24, 1988; revised September 14, AY K
1988. This work was supported in part by the U.S. Army Research Office S(t, b) = T '-bki)y )k(t iT - r) (2.2)
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June 1988. is the element of 22 (the Hilbc,, space of square-integrable
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s,(t) s(t) A linear detector for bit i of user k is characterized by vk.i E L.
The decision of the detector is given by the polarity of the inner

L L product of vk 'I and the vectory of matched filter outputs, which is
T/2, T t T/2 T t equal to

Fig. 1. Example of signature waveforms which can violate the LIA. M K 00

-M,.- ,M}, Sk(t) is the normalized signature waveform of user E EZ 'll i(") =] S(t, wb)(t, Vk."()dt + k (2.6)
k and is zero outside the interval [0, T], and wk(i) is the received I.MJI=I 00

energy of user k in the ith time slot. Let N = 2M + I be the = (S(t, wb), S(t, vk'I)) + nk.1 (2.7)
length of the transmitted sequence. Without loss of generality it is
assumed that the users are numbered such that their delays satisfy where for any information sequence b, wb will denote the sequence
0 < ... rr <T. The normalized signal S(t,b) is the re- of amplitudes wb = {[w bi(i),..., bx(1)], i =
ceiver input signal corresponding to unit energies. -M,-..,M}. nk, t is the noise component at the output of the cas-

Define the vector space L = {x = [x(-M), ,x(M)] = cade of matched filter, sampler and detector, hence is a Gaussian
k I ,Ki -MI,.,(XM, (ahlmn t of wc a zero-mean random variable with variance given by

k , -,K, i = -M,* -- , M}, (each element of which can be
equivalently viewed as a sequence of N (K*l)-vectors or as one E[n,
single (NK*l)-vector), and define the (k, i)th unit vector ukd in k =Z°k(t)vj(i)I a.7§k(t -IT -rk)S(t -iT -rj)dt
L with components uk'(I) = bkj

611. Note that the set of possible t t
transmitted sequences L is a subset of L, obtained by restricting the 2  (2.8)
components of the vector x to take on the values ± 1. Let (-, ") = 1 (2.8)
denote the usual inner product on £2, i.e., the integral of the product
over the region of support, with induced norm B • I. Henceforth, we The receiver decides on the ith bit of the kth user according to the

Imake the following assumption on S(t, b). rule
1) Linear Independence Assumption (LIA): M K

bk(i) = sgn k Z " )yQ) (2.9)v L, v, 0 0 >1 ('v)l o15. (2.3) j
In other words, no matter what the received energies are, the re- = sgn((S(t, wb), 9(t, vk")) + nk,). (2.10)
ceived signal does not vanish everywhere if at least one of the users% transrmtted a symbol. This condition fails to hold only in patho- Wherever it is dear from the context, the superscripts k, ill be

logical nonpractical cases with very heavy crosscorrelation between omitted.
the signals, such as the two-user example in Fig. 1. There if the de- 2) Matrix ,\otation. It is convenient to introduce the following
lay between the users is T,'2, the received signal can be identically compact notation. Define the KK normalized sig.,al crosscorrela-
zero although transmissions have been made (this happens if, for all tion matrices R(1) whose entries are given by
i, b2(i) = -bI(i)]. It is shown in Appendix II that such a situation
will arise with probability zero if the a priori unknown delays arej -()= 0 k(t
pniformly distributed, which is the case in the asynchronous channel Rkj(l) = - Tk)S,(t +lT - r )dt. (2.11)
ised by noncooperating users. Basically, in order to violate the LIA,

8 subset of the users must be effectively synchronous and the mod- Then, since the modulating signals are zero outside [0, T]
ulating signals of this subset have to be heavily correlated. The LIA
will be in effect in the rest of the paper. If it is removed all the given R(I) = 0 V [/ > 1, (2.12)
results can be generalized in a manner analogous to the treatment of
the synchronous transmission case [7]. R(-I) =Rr(l), (2.13)

The sampled output of the normalized matched filter for the ith bit
f the kth user, i = -M,.. .,M, is and, if the users are numbered according to increasing delays, R(l)

is an up er triangular matrix with zero diagonal. Also let W(I)JiT+T+r
Yk(i) r(t)§k(t -iT -7k)dt (2.4) diag ([ y),..., ]WK). With this notation the matched filter

outputs fort = {-M,. . . ,M} can be written in vector form as (cf.,
00 ,(8])

=J S(t, b k(t -i7-k) dt y(l) = R (- I)W(I + 1)b (l + 1) + R (O)W(l)b (1)

00 t  +R(I)W(I - I)b(l - 1) +n(l), (2.14)
+as can be seen for each component by inserting (2.1) into (2.4). We

adopt the convention that b(-M - 1) = b(M + 1) = 0. n(l) is the
1,heie the bec.ond equality is valid since the signals are zero outside matched filter output noise vector, with autocorrelation matmx given
(0, T]. It is well established (e.g., [1]) that the whole sequencey of by
outputs of the bank of K matched filters, with components Yk (i) given
by (2.5), for k = 1,.. ,K, i = -M,. . . ,M, is a sufficient statistic E[n(i)nr(j)] = aR(i - j). (2.15)
for decision on the most likely transmitted information sequence b.
fe multiuser demodulation problem which needs to be solved at The entries of the matrices R(i), i -1, 0, 1 are obtained at the

e recever is to recover the transmitted sequence b E L from the receiver by cross-correlating appropriately delayed replicas of the
quencey E L. Motivated by the state of the art- where the choice normalized signature waveforms according to (2.11). Note that no

ties between the optimum muluuser detector, which is of exponential additional complexity is hereby required of the receiver, since knowl-
complexity and the ad hoc single user detector whose performance edge of the normalized signature waveforms and the capability to
degrades to zero for sufficiently high interference energy- we define lock onto the respective delays are necessary for matched filtering
a class of simple detectors and optimize performance within this and sampling at the instwt of miaximal -signal-to-noise -ratio
class, to obtain an acceptable error probability versus complexity In contrast to (2.5) the asynchronous nature of the problem is
Itdeoff. clearly transparent in (2.14). To make this notation more compact
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K., - N,.I high SNR) of a transmitter whose bit-error-rate curve and energy are
- - given by Pk(a) and Wk, respectively, is

2 K.2
:mek(a)

I 2K NIC ?7k = lira: ! ! ... 4 -.---I o-0 Wk

. Eil =sup 0 _{ r < l; lmPk(a)/Q ( <00 (3.1)

Fig. 2.Eq synchronous transmitted sence. where the last equation follows immediately upon substitution of

we define the NK *NK symmetric block-Toeplitz matrix 1 and the Pk(a) by its expression in terms of the effective energy. In order
w diath nal y ei matrix V, and fol : to visualize intuitively the asymptotic efficiency, note that the log-
NK*NK diagonal matrix 'W, as follows: arithm of the bit-error-rate Pk(a) decays asymptotically with the

R(0) R(-1) 0 ... 0 same slope as the logarithm of the bit-error-rate of a single-user
with energy 77kwk. Therefore, if lim.. 0 Pk(or) > 0, (i.e., there is
an irreducible probability of error even in the absence of background

R(l) R(O) R(-I) noise), then the asymptotic efficiency is zero. Conversely, nonzero
asymptotic efficiency implies that the bit-error-rate goes to zero (as

= 0 R(l) R(0) ". 0 (2.16) a - 0) exponentially in I/o 2.
While asymptotic efficiency and low-noise bit-error-rate are equiv-

R(-I) alent performance measures, asymptotic efficiency has the advantage
of being analytically tractable and of resulting in explicit expressions

0 ... 0 R(I) R(0) for the detectors we are interested in. For example, while the prob-
ability of error of the optimum multiuser detector does not admit an

W= diag (C V -Ml,..., V/'.K(- ... , explicit expression, its asymptotic efficiency is given by [2]
,., ) (2.17) 1 -

tk,i =I - I m IS(t, w01[2  
(3.2)

In this notation the matched filter output vectory depends on b via, Wk(j)EZk

from (2.14) -where Zk is the set of error-sequences e = {6(i) E (-1,0, 1}K, ij
y =dlVwb +n. (2.19) -M,..,M, ek(i) = l} that affect the ith bit of the kth user. Itwas

shown in [31 (see also (151) that the numerical computation of the
The matrix 61 can be interpreted as the cross-correlation matrix asymptotic efficiency of optimum multiuser detection given by (3.2)
for an equivalent synchronous problem where the whole trans- is an NP-complete combinatorial optimization problem.
mitted sequence is considered to result from N*K users, labeled In an environment where the transmission energies change in time,
as shown in Fig. 2, during one transmission interval of duration e.g., if the transmitters are mobile, a performance measure of interest
Te = N*T + rx - rj. Then the results presented here for finite for any detector is its kth user near-far resistance, ik7, which is
transmission length can be derived via analysis of synchronous mul- defined for each detector as its worst case asymptotic efficiency for
tiuser communication, as done in [7]. However, the approach taken bit i of user k over all possible energies of the other (interfering and
in this paper is more general and givas more insight into the nature noninterfering) bits, i.e.,
of the problem. The limit N -- co is considered in Section IV-B.

The decision made on the ith bit of the kth user at the output of k.7 = inf ilk. . (3.3)
the detector v is: Wj(li>°

bk ) = sgnvTy = sgnvT(RWb +n). (2.20) In our definition of near-far resistance we model the most gen-
eral case where the energies of the users are allowed to be time-

As for the inner product, for all x, y in L dependent. This captures the worst case operating conditions of the

detector, which are, for example, encountered in mobile radio com-
(S(t,x), S(t,y)) =xT61y. (2.21) munication, due to positioning and tracking variations. In the case

It can be seen from (2 21) and from (2.3) that 61 is positive definite, where the energies are constrained to be arbitrary but nonvarying
the present near-far resistance is a lower bound. That case is not

III. NEAR-FAR RESISTANCE amenable to closed-form analysis, since one has to deal with a com-
binatorial optimization problem.

The main performance measure we are interested in is the bit- For illustration consider the two-user case. If the user energies are
error-rate in the high signal-to-background noise region. Thus, even constant over time, i.e., w,(i) = w1, w2(i) = w2 , the asymptotic
though the background thermal noise is not neglected, our main focus efficiency of the optimal multiuser detector given by (3.2) reduces to
will be on the underlying performance degradation due to multiple- [21:
access interference. This performance degradation is conveniently
quantified by the asymptotic efficiency which was introduced in W 2 m2
(1]-[21, and is defined as follows. Let Pk(a) denote the bit-error-rate q, = min 1, 1 + - -2 max [P2, 21, t-jT,
of the kth user when the spectral level of te background white Gaus- w1
sian noise is a' and let ek(a) be such that Pk(a) = Q(V'/e~3a).' 2 .'

Then, ek(a) is actually the energy that the kth user would require 1 +2- -  2(Ip12l + IP21 1)
to achieve bit-error-rate Pk(c) in the same white Gaussian channel w
but without interfering users. Hence, we refer to ek(a) as the ef- and hence
fective energy of the kth user, and the efficiency or ratio between
the effective and actual energies ek(a)/wk is a number between 0 7 mn r = min {l -Pq1 2, 1 - ,P~,
and I which characterizes the performance loss due to the cxistence '
of other users in the channel. Thus, the asymptotic efficiency (for 2 1 + " - 021 (3.4)

'Q(x) = f-(lV2,-)e-12d 2 f) ,
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achieved by the linear detector v for the ith bit of the kth user is

- -, W - (9(t, wb), (t, v)) (
/ b (i)=lI

W Knowledge of the asymptotic efficiency of a linear detector is equiv-
----- OPTIMUM MULTIUSER DETECTOR alent to knowledge of the worst case probability of error over the< " -- COVENTONALSINGLE-USER DETECTOR

-bit sequences of the interfering users, since this error probability,
which is a Q-function. is set equal to Q( flk.,(v)wk(i)Ic) to obtain

"(3.10).
For illustration consider the conventional single-user detector in

t I 1k?.} ( P2  I) the two-user case. We have v = uk, (recall that uk" is the (k, i)th
2a unit vector in the space L of linear detectors). If the user energies

I I OX .1p 2 1pp I I are constant over time, i.e., w(i) = w,, w2(i) = w2 , the asymp-

Fig. 3 Asymptotk efficiencies in the two-user case for inlnite transmitted totic efficienc of the conventional single-user detector is found from
sequence length, when the user ene'gies are constant over time (here we (3.10) to be
chose IP121, IP211 = 0.3, 0.5).

and analogously for user 2 where p,2 = R12(O) and p = R12(1). I= max2 {0, 1- (,P,21 + 1Ps, I)w > (3.11)
The dependence of im for constant energies on the energy ratio is
shown in Fig. 3. Note that the opu..dl multiuser detector is near- and analogously for user 2. The dependence of n' for constant ener-
far resistant, and in fact has an asymptotic efficiency of unity for gies on the energy ratio is shown in Fig. 3. Note that the asymptotic
sufficiently powerful interference ([2]). Note also that in this case efficiency of the conventional single-user detector is zero fo: suf-
three different error-sequences minmize (3.2) for different values of ficiently high interference energy (v'w2/vri'T > l/(I1pt i + :P21 I)).
w21w I, as can be seen from the discontinuity points of the derivative This implies that its near-far resistance is zero, which is vnat we
of -q. The minimum of 71 over constant enerp es, 17min, is an up- want to remedy.
per bound on the near-far resistance of optur .n multiiser detection There are three quantities of interest in this communicaticn envi-
,4, which is the minimum asymptotic.efficiency over unconstrained ronment, on the one hand the transmitted bit-sequence and the set of
energies. energies, both of which depend only on the transmitters and deter-

The near-far resistance of the optimal multiuser detector is im- mine the operating points for the receiver, and on the other hand
portant since it is the least upper bound on the near-far resistance of the data-processing detector v at the receiver, which we called a lin-
any detector, and a measure of the relative performance of any sub- ear detector. In determining which linear detector to choose at the
optimal detector. From (3.2) and the definition of near-far resistance receiver a useful proced -e is the minimax approach, in which the
it is equal to design goal is to optinm, he worst cp' performance of the receiver

over the class of operating points. Thus we are interested in finding
the rnaximin linear detector, whose worst case performance over all

VU,' inf -- min 119(t, wc)l11' (3.5) allowable input sequences is the highest in the class of linear detec-
f( mm(i) I, Wk (35 tors. The following result quantifies the performance of the maximin

(,I)¥(k ). detector, in the sequel denoted by v *.
Proposition 1: There exists a linezr detector (which is indepen-

inf r(3.6) tance (i.e., the near-far resistance of the optimum multiuser detec-
j(O>o i Ezk m W tor).

UI)¢'(ki) V~Proof. From (3. 10) the asymptotic efficiency of the linear de-
tector v is

= inf 1Ig(t,y)112. (3.7)
YkV (V) =0max 0, in (S(t, wb), S(t,v)) (3.12)

In Section IV, we obtain a closed-form expression for (3.7) as the Wk(i) b Bb [IS(t, v)I
reciprocal of the (k, i)th diagonal element-.(see footnote 2) of the

inverse of 61. Hence, the near-far resistance of optimum multiuser . 1 2 t (S(twb),S(t, v)) ( "1

resistance is guarauteed to be nonzero because of the linear indepen- x - maxk I1(t, 033
dence assumption of (2.3), which ensures that (R is invertible. bk(l)=i

We now turn to the performance analysis of the linear detectors 2 bTW6v
introduced above. The probability of error at decision upon bk(i) of = min - max' 0, (3.14)
the linear detector v is, from (2.10): bEB Wk( ) f

kW=P(bkW$ bk(i)) (3.8) where in the last equality we have used the compact matrix notation
P(i) = ( )of (2.21) for simplicity. We are interested in the linear detector with

the highest worst case asymptotic efficiency, i.e,, whose near-far
= P(((t, wb), S(t, v)) + nk.1 <OIbk(i) = 1). (3.9) resistance is

The equality follows s nce the hypotheses +1,-I are assumed (3.5)
equally likely. Let B be the set of possible transmitted sequences. rki(*) = sup _inf n,(v)(3

From (2.8) nk. is a zero-mean Gaussian random variable with vari- 3(t.y)l 1o (J.t, 1(k.I)

ance or2 IS(t, v)j1, hence the probability of error in (3.9) is a sum ot 1 br'"ft
Q-functions, one for each possible interfering bit-combination. For = sup >inf mm max2

VEL wfll)>O bEB WkWi WrI
0 ,o -+ 0 the Q-function with the smallest argument dominates the er- ,r o (jla)(ki) bi)=l

ror probability, hence from (3.1), since the expression below can be
shown(cf. (15]) to be upper bounded by 1, the asymptouc efficiency (3.16)



500 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 38, NO. 4 APRIL 1990

sup inf max2 I0, YTRv } (3.17)
vEL yCL I.
,tlvo YW()

= 1

= max2  0, sup inf Yr.2L (3.18)
vEL YEL '/ JMvrolv7/ yk¢0)=i

where we have set y(l) = bj(l),/v Vw73 k for the third equal-
ity. Let M(v,y) denote the penalty functiony fv//vrdRv where
the first argument is from the set of detectors and the second from
the set of operating points, both specified in (3.18). We show in Fig. 4. Interpretation of near-far resistance. Vector in boldface corresponds

Appendix I that M(v,y) has a saddle point, i.e., to decorrelating filter.

sup inf Y -(RV inf sup Yrftv (3.19) Letting {yj(l)} vary over the admissible set, the second term above
UEL eLL I Vv V , '. L Vrv '  generates all points of a linear subspace which includes the origin,
r(R.o yk(i i YAOk1)=' Vr therefore the infimum in (3.26) is the distance of Sk(t - iT - rk) to

which establishes the existence of u* and hence this space, i.e.,

yT f ikj,-7 = d2 Gk(t -iT -7k), span {3j(t -IT -7j), (j, 1) # (k, i)})

Vk~j(v*) = max2  0, inf sup (3.20) (3.27)
yEL YEL Vr(.2v0)

Yk(i)=i vrTay,,O where d(a, b) denotes the Euclidean distance between the 22 ele-

ments a and b. In the synchronous case because the time-support is

max2  , disjoint, the infimum in (3.26) is achieved when yj(l) = 0, 1 - i,
x , (3.21) and (3.27) reduces to

-"M i F" = d2 (Sk(t), span {j(t), j k}), (3.28)= inf }]18(t,y)}l z  (3.22)
yL i.e., the kth user near-far resistance in a synchronous channel is the
1k."" (3.23) square of the distance of the kth user signal to the space spanned

by the signals of the interfering users. Viewing the asynchronous
where the second equality is obtained in (A. 1), the third line follows problem in terms of the equivalent synchronous system with N*K
since (1 is nonnegative definite and the last equality was obtained in users and period NT, the near-far resistance of asynchronous com-
(3.7). 0 munication.allows for the same interpretation. Note, however, that

The reason why the near-far optimum linear receiver achieves the the shifted versions sk(t -IT -rk),l i of the kth user signal affect
same near-far resistance as the optimum receiver can be understood the near-far resistance of the ith symbol of user k.
as follows. Let fQ be the set of multiuser signals modulated by all The following section characterizes the linear detector that achieves
positive amplitudes, i.e., !Q = {S(t,y), y E L} and let E denote the the optimum near-far resistance anticipated by Proposition 1.
subset of !2 such that the amplitude of the ith symbol of the kth user I. THE DECORRELTINo DETECTOR
is fixed to 1, i.e., '-; = {S(t,y), y EL, Yk(i) = 1} (note that S is
a convex set, and because of the LIA it does not include the origin). We first assume N to be finite, as in the case in all communica-
Since the penalty function in (3.18) is invariant to scaling of v and tion environments, and characterize the linear filter "hich achieves
the operator (R is positive definite, (3.18) can be rewritten as the near-far resistance of optimum multiuser detection. This filter is

( nonstationary for finkt N. The limit as N -- oo is then considered,
yielding a stationary noncausal limiting filter, and hence, after ap-

7,.(V) = max2  0, sup inf S(tLy), (t, v)) propriate truncation of the noncausal part, an approximation of the
IEL yEL near-far optimal linear filter which can be implemented easilyIS.tv)II ,I YW)W

(3.24) A. The Finite Sequence Length Casef Definition: A decorrelating detector dk- i for the ih bit of the kth

= max2 0, sup inf y, u ) (3.25) user is a linear detector for which
Sl) Y kI =uk,i (4.1)

Therefore the kth user deconelating filter can be viewed as the unit- or equivalently, from (2.21), (S(t, v), S(t, dkJ)) - Vk(i), for all v
norm multi.ser waveform whose minimum inner product with the in L.
elements of E7 is highest. But since : is a convex set, that signal is a Existence: By the LIA, statement (4.2) below holds for all k, i.
scaled version of the -losest vector in : to the origin (Fig. 4), and Hence, the following equivalences show the existence of the decor-
its near-far resistance [cf. (3.22)] is the norm squared of that vector, relating detectors for each bit of each user.
But, as (3.7) indicates, the square of the distance from E to the originis precisely the near-far resistance of the optimum detector. V v E L with vk(i) 0 0: 11 (t, v)JJ 0 0 (4.2)

Equation (3.7) leads to a nice intuitive interpretation of near-far * V v E L with k(i) # 0: vT61v # 0 (4.3)
resistan,:e. Rewrite this equation, using the definition of S(, •), as

2 ]4* 3 v E L with vk(i) 5 0 s.t. (Rv = 0 (4.4)

lk if k( -iT- r) Y () ( - IT - ;e the (k, i)th columin2 of 61l is
y)U(I)k.I) UJI't(,) 'We refer to the (k, i)th row (or column) ofa matrix of the dimension of 6lwhen we ,.ant to name the kth row (or column) within the ih block in vertical

(3.26) (horizontal) direction. This not*tion was adopted since 6 is block-Toeplitz.
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x linearly independent of the others (4.5) { .
*3 d s.t. 61d =u k. (4.6) W( ,..I

Properties:
i) The decorrelating detector for each bit of each user is invariant

with respect to received energies and does not require knowledge {n ,))
thereof. Fig. 5. Equivalent communication system.

Proof. Since the elements of the matrix (l are normalized
crosscorrelation coefficients, the defining equation (4.1) is energy and outlines an alternative proof for Proposition 1: we could have
independent.iin The decorrelating detector eliminates the multiuser interference explicitly solved the above optimization problem by proceeding alongii) h e eco rel tin de ect r ei mi ate th m u tiu er nte fer nce th e sam elines as in A ppendix 1, postulated th e decorrelatmng detector
present in the respective matched filter output. (Hence its name). th aea ine as in apendx , atd the andetor

Proof., From (2.20) the decision made on the th bit of the kth easoning as in Fact under v), and shown that the asymptotic
efficiency of the decorrelating detector and the near-far resistance ofuser at the output of the decorrelating filter d is, optimal multiuser detection are equal (see (7]). However, the game

M+dn) theoretic proof provides more insight into the nature of the solution.
Property iii) is of special importance. By this property the decor-

= sgn ( W(i)bk(i) +drn). (4.7) relating detector does not become multiple-access limited, no matter
how strong the multiple-access interference is. Also the decorrelatingInterestingly, this natural strategy, though not necessanly optimal for detector demodulates the data perfecy in the absence of nose, as

specific user-energies, is optimal with respect to the worst possible cto e e s tr e d r i a o sdistribution of energies. can be seen from (4.7).
itibti) n en-sergi-e. oCharacterization: We would now like to find an explicit expres-iii) The kth-user bit-error-rate of the decorrelating detector is sion for the decorrelating detector which we have up to now definedSindependent of the energies of the interfering users wj(i), j 7- k, I olw rm adteo

implicitly. It follows immediately from (4.1) and the uniqueness of
f tthe inverse of an invertible matrix that the decorrelating detector forProof: It follows from (4.7) that the decision statistic that is the ith bit of user k is the (k, i)th row of the inverse of (R.

compared to a zero threshold is independent of the energies of the From the above and (4.10) the asymptotic efficiency of the decor-
interfering users. relating detector for the ith bit of user k is given by the (k, t)th

iv) The efficiency of the decorrelating detector is independent of diagonal element of the inverse of 61:
the energies and is given by

d IWb), t, d)) k, I = R-1 4.3

d )0 mm(k, i). (k, 1)
lat = max2 10, mrin 1 StW) t,) (4.8) o..{.

W),i v IIS(t, d)1I For the values of N encountered in practical applications, inverting a
NK*NK matrix is not possible. This issue is addressed in Section

1IV-B where we represent the decorrelating detector as a K-input K-
= max2  0, min I mbk(i) (4.9) output time-varying linear filter, and then show that in the limit as

bbp VWW Vd) N tends to infinity the filter becomes time-invariant.

B. The Limiting Case N - o11o
S(4.10) Proposition 2: As the length of the transmitted sequence in-

creases (N -- oo) the decorrelating detector approaches the K-inputwhich by i) is energy-independent. K-output linear time-invariant filter with transfer function
v) The decorrelating detector is the worst case optimal linear de-

tector, and achieves the near-far resistance of optimum multiuser G(z) = [R7(l)z +R(0) +R(1)z-F - . (4.14)
detection.

Proof: The proof of Proposition 1 is constructive, hence the
first part of v) was obtained as a byproduct in Appendix 1. Here is Proof. From (2.14) and (2.13) the matched filter outputs for
a shorter proof, using the following fact. Any single linear strategy I = {-M, -..,M) are
which is not decorrelating has a near-far resistance of zero. This ij
shown as follows. The near-far resistance of a linear filter is (cf. y(I) =RT(1)W(I + 1)b(l + 1) +R(O)W(I)b(l)
(3.18)): +R(1)W(I - l)b(l - 1) +n(I) (4.15)

77 V = max 0 twhezeb(-M - 1) =b(M + 1) = 0. Taking z-transforms and letting

, . 11 Ngo to infinity we have

Unless dRv =uk.i (note invariance of -q to scaling of v) the value of Y(z) =S(z)[WBI(z) + N(z) (4.16)

the inf-term is -co. Hence any linear filter which is not decorrelating where WB](z) is thle z-transform of the sequence wb =
has a near-far resistance if = 0. This fact together with the nonzero {[ Viw 1(i)b(i), ', wiK(i)bX(i)1}, the matrix S(z) is
asymptotic efficiency (4.10) of the decorrelating detector establish
optimality of the decorrelating detector within the class of linear S(z) =RT(1)z +R(0) +R(I)z - ' (4.17)I filters. Therefore the second part of v) results from Proposition 1.

Note that since the asymptotic efficiency of the decorrelating de- and Y(z), B(z) and N(z) are, respectively, the vector-valued z-
tector is independent of energies (Property iv) it equals the near-far transforms of the matched filter output sequence, the transmitted
resistance. This gives us an explicit solution for the Hilbert space op- sequence, and the noise sequence at the output of the matched fil-
timization problem we obtained for the near-far resistance of optimal ters. S(z) can be interpreted as the equivalent transfer function of
multiuser detection in (3.7), namely, the multiuser communication system between transmitter and deci-

sion algorithm, as illustrated in Fig. 5. In this setting the optimal
71k (4,)) receiver problem is to find the transfer function matrix G(z) of a

kK-input K-output linear time-invariant filter, at the output of which

• _-
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Hence, for a zero output sequence y, the vector H(e/')X(e'l) has
t- to vanish for all w, which implies that H(eJ1') is singular whenever

W S (Z) -ad. Sz) X(eiL) is nonzero. This establishes the claimed equivalence.
Proposition 4: Condition (4.19) of Proposition 3 is equivalent to

(n(0) min (x R(0W - (x*R x)2 + (x-R..x)2 ) > 0 (4.20)

Fig. 6. Interpretation of the decorrelating detector. x ED

a sign-decision yields estimates of the transmitted sequence which whereR+ =RT(I)+R(I) andR_ =j(RT(l)-R(l)).The* denotes
are optimal in a certain sense. In our case the optimality criterion is the complex conjugate. 9
the near-far resistance, and we have demonstrated that the optimal Note that both R + and R - are Hermitian. The proof of Proposi-
filter is the decorrelating filter, which is the filter that eliminates the tion 4 is given in [15], together with the following two results.
multiuser interference, i.e., is the K-input K-output time invariant -A necessary condition for (4.20) is that the matrices R(0) +
linear filter which recovers the transmitted data in the absence of R(I) +Rr(l) and R(0) -R(l) -RT(l) be nonsingular.
noise. Its transfer function is therefore the inverse of the equivalent -A sufficient condition for (4.20) is that
transfer function S(z):

G(z) = S(z)]-'. (4.18)
0 The following results quantify the asymptotic efficiency achieved by

The effect of the inverse filter [S(z)] - l can be interpreted as illus- the limiting decorrclating detector.

tited in Fig. 6. The decorrelating filter can be viewed as the cascade Proposition 5: Let
of a finite impulse response filter with transfer function adjointS(z), ls() = D(m)z-. (4.21)
which decorrelates the users, but introduces intersymbol interference
among the previously noninterfering symbols of the same user, and m -o
of a second filter, consisting of a bank of K identical filters withtranferfuntio [deS~z]~,whih reove ths itersmbo iner- Then the asymptotic efficiency. of the limiting decorrelating detectortransfer function [det S(z)]-', whch removes this imtersymbol iter- for the kth user is given by
ference. Whereas the region of converg-.nce of the z-transform can
always be chosen so as to make S(z) invertible, attention has to be 1
paid to the issue of stability. 77k = D (.0)

Proposition 3: There is a stable, noncausal realization of the Dkk(0)
decorrelating detector, if and only if the signal cross-correlations r ir , I
are such that = 21 j °][RT(l)ew

' +R(0) +R()e-J" i' dwj

detS(e '") = det[RT (l)eJw +R(0) +R(I)e-J] - 0, Vwo E [0, 2r]. (4.23)

(4.19)

0 Proof. From Proposition 2 the z-transform of the decision
Proof.- As long as det S(z) has no zeros on the unit circle, a statistic at the output of the limiting decorrelating detector is given

nonempty convergence region of S-I(z) can be chosen which in- by
cludes the unit circle. Thus, stability can be achieved. But, since
R(0) is symmetric, G(z)Y(z) = [WB](z) + [S(z)]-'N(z) = [WB](z) + N'(z)

det S(z) = det ST(z) = det S(z - 1). where N'(z) is the z-transform of the (stationary) filtered Gaussian
background noise vector seuence. The z-transform of its covariance

Hence, the stable version of the decorrelating detector will be non- matrix sequence E[n( .)n (. + i)] is equal to o2 iS(z)]-', hence
causal. (As a side remark, the matrix S(eJ') is nonnegative define with (4.21) n. is a zero-mean Gaussian random variable with vai-
for all o, cf. [15]). K> ance a2Dkk (0). Therefore, the probability of error for the kth user

Condition (4.19) is equivalent to the limit of the LIA as N - co. equals
Both are necessary and sufficient conditions for system invertibility.
The LIA requires that the output of a system (the system between P P(n > ,Wv ) Q (4.24)
the user bit-streams and the matched filter outputs) not be identically Pk a Pk n _42
zero if the input is nonzero. Hence different inputs generate differ-
ent outputs, i.e., the system is invertible. For a linear system the From here, using the definition of asymptotic efficiency, the first
requirement that nonzero input produce nonzero output is equivalent equality follows. For the second, note that applying the invc.rse z-
to requiring that the transfer matrix be nonsingular on the unit circle, transform and definition (4.21), we obtain
Assume the transfer matrix is singular at the angular frequency Wo.
Necessity follows since otherwise the input sequence consisting of I 2 "
a complex exponential at wo times a vector in the nullspace of the Dkk(O) =2-X e)
transfer matrix evaluated at wo yields zero output; since the trans-
fer function on the unit circle gives the magnitude and phase of the and the result follows using (4.17). K
system response to complex exponentials. On the other hand, suf- Proposition 6." The asymptotic efficiency of the limiting decorre-
ficiency can be established by using Parseval's relation extended to lating detector for the kth user is strictly positive, and lower bounded
multivariable systems: by

J- 0,2jr

f I JH(ej")X(e1")JJ' dw. (.5
2 0
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Proof. From (4.22), (4.23)

Dkk(O)<_ max T[R(l eJw+R(O)+R(l)e-J 1-[. (4.26) - - - - - -
wEb, 2r1 -

Hence, Li
-I ..... OPTIMUM MULTIUSER DETECTOR

dr nmax I1) + +R1l']' -CONVENTIONAL SINGLEUSEROETECTOR
nk>[mxI[R" +RO U\A~eJkk- -OS ()- 1.21CORRELATING DETECTOR

r =Dk:(0) - +L() PTMU MLTISE jTETO

rain I det [RrT(lIe J ' +R(0) +R(l)e-J l ""..,.
> W1(4.27) 2-" 11P12 I~l, l}P1 1) I(I,,2 l+lP2, I)

max ladik [RT(l)eJ' +R(0) +R()e-J"']' (=4{ t IP2.1 1I

Swhich is positivc by Proposition 3. Fig. 7. Asymptotic efficiencies in the two-user case for infinite transmitted
sequence length, when the user energies are constant over time (here we

Propovition 7: In the two-user case let R, 2(0) = P12 and R 12(l) = chose IP12 1, jpi =0.3, 0.5 which yields qmin 0.68, id =0.59)
p2j. Then the asymptotic efficiency of the decorrelating detector for
infinite sequence length is given by unforced linear dynamic system

dl = 1 2 - 4p 2p 2 I
n 1 -= 1221 Xn 2 Xn-I, Xl = P 2

= 11l - (P12 + P21) 2 1l -( (P12 -- )]. (4.28)
* i.e.,

Proof. This formula can be obtained by particularizing Propo- r 2 0 2 -2]n

sition 5 or by minimizing the asymptotic efficiency of optimal mul- p (4.33)
tiuser detection in the two-user cage with respect to energies. Alter- x= 1 -O2 (
natively, we will prove (4.28) by taking the limit as N - oo of the LiI asymptotic efficiency of the decorrelating filter for the central bits in The eigenvalues of this system are found to be
a length N sequence. We will then have proved that in the two-
user case the limit of the asymptotic efficiency of the finite-length - p22 - 0I - - 021)2- 41202

decorrelating detector as N - co is indeed the asymptotic efficiency X1,2 = 2
of the limiting decorrelating detector.

Recall that the asymptotic efficiency of the decorrelating detector We see 0 < X, < X2 < 1. After finding the corresponding eigenvec-
is given by the reciprocal of the corresponding diagonal element of tors it follows that:
61-1. We need to find explicit expressions for the central diagonal
elem ents of the inverse of the matrix (R as a function of N. We have =XI+P'

2  
X2+P '" [X1 0]

1 P12 0 0 1 1 10 X

P12 1 P21 0 [11( 2.~p 1)1 ] 1

6i - 0 P2 1 P12 " (4.29) -1  X,+p21  X1 -2

0 0 P12 1 . =-[--- + Pj IX " (4.34)

Hence the Central diagonal element of the inverse of 6 is

Denote by A, the deerminant of the above n*n matrix. It is easy
to see from the. • . 61 that A, satisfies the recursion A4n _ [1 0It2n

A2n-I A 2n [0 l~r,[l 0]xn

r An- 2, n evenod. (4.30) ( 1 X)~X p 1 -X p 1An =an- P12 A,-2, n even [(X/X)X - l][(X,/X)(X, 21 N +P )22+2 (2 +p))

Hence, we can write (i - X2). (4.35)

All , - -1 P2 A2n-2 (4.31) allyJ A_ 2 L A2 , 3 i A 4, -

If we consider the sequence of 4n*4n matrices for simplicity, the -00 A 2 n-1 A 2
(

central diagonal element of the inverse of 61 is A 4n/(A2 ni A2,). C
Hence, after introducing the state vector Fig. 7 shows the asymptotic efficiency of the decorrelating detector

for infinite transmitted sequence length in the two user case. Note its

(4.32) invariance with respect to energies. The discrepancy between 71 d and
A2 ,1  ,(.2 min, defined in (3.4), is dut. to the fact that 7 mm is higher than the
x - J near-far resistance of optimum multiuser detection, since for >7 mm

we see that finding A 2,, A2n, requires finding the trajectory of the the energies are constrained to be constant over time.
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' t) Tcrosscorrelation between bits in adjacent intervals, is I - r. Then,

I... r + (I - r)z (4.38)

(t) T I -becomes singular for z = 1, hence there is no stable limiting inverse
R,, (1) R, (0) filter. And if it existed its asymptotic efficiency, as given by (4.28),

WT -would be zero. This is not surprising, for an infinite sequence of
transmitted bits where both users use the same waveform. However,
for finite length sequences advantage can be taken of the marginal

T t effects of having bits which are not affected by either past or future
Fig. 8. Signals and cros-correlations of example (4.42). bits. For finite N the decorrelating detector exists unless r = 0, i.e.,

when the transmissions are not synchronous. This is in accord with

The fact that the stable version of the decorrelating filter turns out the multiarrival condition given in Appendix 2, and with the results
to be noncausal is not surprising. Due to the lack of synchronism obtained in the synchronous case [7].
among the users any decision based on less than the entire received V. ERROR PROBABILITIES: NUMERICAL EXAMPLES
waveform is suboptimal. In practice, since the filter is stable, the
more remote symbols will count less heavily, and truncation of the In the sequel, we compare the performances of the conventional
non,ausal part will be performed after a suitable delay without affect- and of the decorrelating detector. Without loss of generality we con-
mjb performance appreciably. For illustration conbider the two-user sider the error probability of user 1 in a channel shared by several
case where we let Ri 2(0) = P12 and R12 (1) = P21. Then active users. The conventional detector decides for the sign of the

kth component of the matched filter output vector, given by (2.14).
/ 1 P12 + z- I  Therefore its average error probability over the bit sequences of the

S(z) = '2 interfering users equals
Pi2 +P2iZ 1 /1

and the transfer function of the decorrelating detector as given by 22(K - 1) L'
(4.27) is bj(O).bj(-I). 1 11

1-Z P2 2 --E R U(0)b/(0) +Rl(l)bj(-l)]Vff

S1(Z) = I -p 2 - P120 Z-P2P2iZP2iZ(4 Q (+( , (5.1)

-(1 -(P2 Pz)-'

(P12 + P21iZ) (4.36)2IZI)

whereas its worst case error probability over the interfering bit se-
We are interested in the impulse response f(n) of the IIR part of the quences equals
above filter. Taking the inverse z-transform it is found to be

fIn I Z&[] I v~wT - Z[I(O)I + jIji(l)]~/Ii-1 - p=2 - 21 - Pi2P21Z - P12P21Z- ' n Q - . (5.2)

(4.37)

where t = (1 - p22 - p21 - 71)/(2pl2P21) and n/ is the asymptotic The probability of error of the decorrelating detector equals, from
efficiency which is given by Proposition 7. It can be checked that (4.24),
If1 < 1, with equality if Ip,21 + Ip2i1 = 1, which can be shown to
coincide with the condition imposed by Proposition 3 for the two-
user case. In the latter case the asymptotic efficiency is zero, which Q I
follows from Proposition 7. Otherwise, since < 1 the limiting fil- /Iw
ter is stable, with symmetric coefficients which decay with rate t.
In practical applications the filter will be approximated up to any with (the equivalence with (4.23) is easy to show, cf. [15])
desired precision by truncation of the noncausal part to a finite num-
ber of filter coefficients. For illustration the decay rate of the filter 1f T,-
coefficients and the achievable asymptotic efficiency 7 are plotted in D,(0) = o[R(l)r J' +R(0) +R(l)e-li dw. (5.3)
Fig. 9 as functions of P12 and p~i.

Poor cross-correlation properties among the signature waveforms The delays enter the above formulas implicitly via the crosscorrela-
,.ould imply that the limuting filter G(Z) does not exist, although the tion matrices, which are functions thereof and of the chosen signa-
decurrelating detector exists for finite-length transmitted sequences. ture sequences. In the following examples, we have chosen a set uf
We give an example to illustrate this fact. For K = 2 it is straight- spread-spectrum m-sequences of length 31.
forward to show that the condition of Proposition 3 is satisfied for In Fig. 10 we use, for comparison purposes to previous works
all signal constellations for which iRz(0)1 = R, 2(I)1 # 1. This is ([14], [1]), the set of 3 sequences reported in [12, Table V] to be
the ,ase unless the normalized waveforms coincide modulo circular optimal with respect to a signal -to-multiple-access interference pa-
shifts and sign changes. rameter when the conventional detector is used. We consider a base-

Consider the trvial signal case where both users are assigned the band environment with K - 1 active equal energy interferers, whose
same rectangular waveform, as shown in Fig. 8. Abbreviate R12 (0), delay relative to each other is fixed. Fig. 10, for K = 3, shows the
whidi is the crosscorrelation between bits in the same signaling in- 1st user error probabdity of the conventional receiver versus SNRj,
terval, by r 71'T E [0, 1), then in this case R 12(), which is the the signal-to-background-noise ratio of user 1, for different values
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Fig.(9. (a) Asymptotic efficiency of the decorrelating dtector for two users
as a function of the partial crosscorrelations of their signature waveforms.
(b) Decay rates of the coefficients of the 1IR part of the decorrelating
detector for two users, symmetric in PI2 and P21.

of the energy ratio SNRISNRI, averaged over the bit sequences of
101 ,the two interferers and over the delay of user 1. Also shown are the

W, &IS1st user error probability of the decorrelating detector and the error
-probability of the single user channel. From Fig. 10 we see the strong

. . dependence of the performance of the conventional receiver on the
0-3 ~- relative energies of the active users. While the error probability of the

\ ~ *, &correlating detector is invariant to the energy of interfering users,
W the performance of the conventional receiver deteriorates rapidly for
6 increasing interference, till for an energy ratio above 5 dB the con-

, 0 \N ventional receiver becomes practically multiple-access limited. (For a
-588 sufficiently high level of nonorthogonal interference the error proba-

bility of the conventional receiver can be seen to become irreducible.
E.g., in the two-user synchronous case, for V/w2/V~R= (I + A)/p

a.PdB where p is the normalized crosscor. elation coefficient between the
.CONlVENTIONAL two signature signals and A : 0, the error probability of the con-

DECORLIN ventional receiver tends to 1/4 if A = 0 and to 1/2 if1 > o
DE TECTOR increasing SNR of user 1). Note that if the energies of all the users

gSNGE USER are equal the decorrelating detector is around two orders of mag
nitude better than the conventional receiver at 10 dB. Only if the

4 6 8 10 12 14 multiple-access interference level plays a subordinate role compared
SNR,(db) to the background noise does the conventional detector outperform

Fig 10. Error probability of user I with 2 active equal energy interferers, the decorrelating detector, which pays a penalty for combatting the
each of energy wj, averaged over the interfering bit sequences and over interference instead of ignoring 4t. Sinular results were obtained re-
the delay of user I, for the decorrelating and conventional receiver versus gardless of the actual value of the relative delay between the two
the SNR of user 1, for rn-sequences of length 31 anddifferent interference interfering users.
levels. Fig. II shows the same setting as above, in the case K = 6. We

have used the set of autooptimal -sequences of lecngth 31 found in
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detector in conjunction with a set of signature sequences optimized
tO /---OdB for its use.

VI. CONCLUSIONS

_O- In this paper, we have obtained a linear multiuser detector,
\\ "-8 the decorrelating detector, for demodulation of asynchronous code-cc ." division multiplexed signals in white Gaussian channels. The bit-

error-rate of this detector is independent of the energy of the inter-

*O fering users and exhibits the same degree of near-far resistance as
t \\IodB the optimum multiuser detector obtained in [1]. Since the decorrelat-

".. .2 ing detector does not require knowledge of the received energies and
, O. . " ' \ its complexity is only linear in the number of users, it emerges as

*0 the solution of choice in near-far environments with a large number
of users.

DETCOREL G In applications where each receiver is interested in demodulating

0 DETECTOR \ the information transmitted by only one user, it is easy to decentralize
.SINGLE USER te K-user decorrelating receiver since it can be implemented as K

4 Lseparate (continuous-time) single-input (discrete-time) single-output
6 s 10 12 filters. Each of those filters can be viewed as a modification of the

SNR, t dB) conventional single-user matched filter where instead of correlating

Fig. 11. Same as Fig. 10, with 5 active equal energy interferers. the channel output with the signature waveform of the user of interest,
we use its projection on the subspace orthogonal to the space spanned

..- , ~by the interfering signals.
.-..... ~ wi/V,.- - Note, finally, that if the filter is actually an approximation to the

decorrelating receiver, due to, for example, finite accuracy in the
,., .. computation of the crosscorrelations or truncation of the impulse

.oOdN...-". response (Section IV-B), it will no longer be orthogonal to the sub-
space of the interfering signals and therefore it will not be near-far

Wt resistant in the worst case sense adopted in this paper. However,
!° e4the effect on the bit-error-rate will be arbitrarily small with a good
>enough approximation to the decorrelating receiver, and therefore the
=--20dB bit-error-rate will be very insensitive to the energy level of the inter-

ferers. Hence, the resistance to the near-far problem can be preserved
CONVENTIONAL. within any desired energy range.
DETECTOR •

b"  OECORRELATING APPENDIX I
DETECTOR

......... SINGLE USER SADDLE-POINT PROPERTY IN (3.19)

i0 Though the penalty function of (3.18) looks similar to the signal-
4 6 8 t0 12 14 to-noise ratio functional encountered in the robust matched filtering

SNR, (Q) problem [5), I(h, s)12/(h, 'h), the problem is different here be-

Fig. 12. Worst case probability of user I w.r.t. the bit sequences of the cause the numerator can be negative. Thus we have to establish the
interfering users, with 9 equal energy interferers. result "from scratch." In order to show that M(v,y) has a saddle

point, i.e., satisfies (3.19), we show that it satisfies the requirements
[13, Fig. A. I] to be optimal with respect to certain peak and mean- ofthe following theorem.
square correlation parameters which play an important role in the Theorem [4, Thin. 2.11: Suppose Q is a convex set and M(v, •)
error probability analysis of the conventional detector. Comparing is convex on Q for every v E H. Then if (vL,YL) is a regular pair3

Fig. 1 to Fig. 10 we see the same qualitative error probability for (H, Q, M), the following are equivalent:
relation between the two detectors, and again the strong near-far a) yL E argmin sup M(v,y),
limitation of the conventional receiver. Since there are more active r 'e,,E

interferers the performance advantage of the decorrelating detector b) (yvL,YL) is a saddle point solution for (H, Q, M).
in a near-far environment is even more pronounced: if the energies This theorem establishes that if we exhibit a regular pair whose sec-
of all the users are equal the decorrelating detector is almost three ond argument satisfies a), the game (H, Q, aM) has a saddle point,
orders of magnitude better than the conventional receiver at 10 dB, which means that the sequence of max and su in (3.18) can be in-

Finally, Fig. 12 shows the worst case probability of the conven- terchanged. In the following, we find a suitable regular pair, thereby
tional detector over the sequences of interfering users, as given by proving (3.19).
(5.2), for K = 10. The signature sequence set used. for K = 6 Clearly the convexity conditions are satisfied (the set of detectors is
has been expanded--without trying to optimize, as before, with re- not required to be topologized). We need to find a candidate regular

pair. Note that the value of inf term in (3.18) is - oo (which gives aspect to the performance of the conventional detector. The shown near-far resistance of zero) unless v is picked such that 6V = u ,  ( o
error probabilities are typical, varying very little if different sets of nr-a res c o er) ne of i pked s th (, u vt
delays are used because of the good crosscorrelaonis inv.iant with respect to scaling of v2. u is the (k, i)th unit vector
d-seuesed geaethe gin the Hilbert space L, defined as u "(1) = bkj6&I. This gives us acandidate for an optimal detector vt: d, with OW =u k,1. Existence

Overall the generated error probability curves show the pro- of such a vector is shown in (4.6) to follow from the LIA of (2.3).
nounced superiority of the decorrelating receiver in a near-far envi-
ronment, and whenever sufficiently many users are active even if their 3(vL,yf) E H x Q is a regular pair for (H, Q, A) if, for every y e Q
energies are well below the energy of the desired user. Note, finally, such thaty, = (I - cly. - co, c Q for a e [0, 1], we have
that the selected signature sequences were optimal with respect to the
performance of the conventional receiver. It would be interesting to sup M(v,y,) -M(vL,y,,) = o(a).
investigate the possible performance gain of using the decorrelating ,
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(If this detector is indeed optimal, which follows if the candidate pair y (Rlv/1V has a saddle point, i.e.,
is regular and satisfies a), and coincides with v *). rv
Next we find a yL which meets the requirement of point a) of the sup inf Y inf inf Y . A7
theorem. Using the Cauchy-Schwarz inequality, we find that e E t vYL = yEL yeL vr (A

sup M(v,y) = sup Y iV y( (A. 1)
.EH YEt.7 (A, APPENDIX 2

SUFFICIENT CONDITIONS FOR LINEAR INDEPENDENCE

where the inner product is maximized for v =ky + {x E L: ft =01. Suppose that, for a fixed signal set,

i) {t,.. , T" } are continuous random variables,
ii) {r1... ,TK } are independent random variables,

We now need to solve the Hilbert space optimization problem iii) wk(i) # 0.
Then almost surely there is no v E L, Vk(i) # 0 such that S(t, v) = 0.

inf yr(Ty (A.2) Proof: Define the times of effective arrival and departure of the
ith signal of the kth user [1], as

subject to yk() = 1.

Using (2.21) and the definition ofd we can rewrite the minimization Xtk = Tk +iT + sup T E [0, T), / s(t)dt =0 (A8)
problem under consideration as an }

inf IIYIR (A.3) f
subec to(dy = 1. rk + iT +inf r E (0, T], s1(t) dt = 0 , (A.9)

subject to (d,Y)R =. LJr~

II.JIR is a norm since (R is positive definite. We have obtained a respectively.
nunimum-norm optimization problem in Hilbert space. To prove ex- Since v A (i) # 0 there is a first and a last symbol that differs from
istence of a solution-we need to show that constraint set to be closed, zero. It is readily apparent that in order to have S(t, v) = 0, the
which holds since the Hilbert space is finite dimensional. (Even for effective arrival of the first (and the effective departure of the last)
N - oo, when we have an infinite dimensional optimization prob- symbol that differs from zero must be a point of effective multiar-
lem, we could use the fact that the codimension is finite. The prob- rival (respectively multideparture). Note that this property does not
lem there is that the signals are no longer square integrable.) The depend on the particular v chosen, but only on the set of delays.
constraint, yk(i) = 1, is equivalent toy =uk.l -- {x: e, d)R = 0}. From (A.8), (A.9), the effective times of arrival and departure in-
t = [d], the subspace generated by d, is a closed subspace of dimen- herit from the delays the properties of being continuously valued and
sion 1. Hence the constraint set {r: v, d)1 = 0} = i- Is closed, mutually independent. Therefore, the result follows, since the set of
We now have a minimum-norm optimuzation problem in Hilbert space delays {r,, , r } for which multiarrival points result has measure
over a closed subspace. Hence, the Projection Theorem, [6], guar- zero. 0
antees existence [so we can replace the inf by a min, as required in REFERENCESI a)] and uniqueness of a minimizing equivalence class y*, with l1) S. Verdi, "Minimum probability of error for asynchronous Gaussian
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Linear Multiuser Detectors for Synchronous
Code-Division Multiple-Access Channels

RUXANDRA LUPAS, STUDENT MEMBER, IEEE, AND SERGIO VERDO, SENIOR MEMBER, IEEE

Abstract -in code-division multipl-access systems, simultaneous mul- demodulate the transmitted messages when the assigned
fiuser accessing of a common channel Is made possible by assigning a signals are not orthogonal. In practice, demodulation
signature wavelorm to each user. Knowledge of these waveforms enables
the receiver to demodulate )e data streams of each user, upon observation strategies have been restricted to single-user detection,
of the sum of the transmitted signals, perturbed by additive noise. Under thereby placing the whole burden of complexity on the
the assumptions of symbol-synchronous trmnsmissions and white Gaussian cross correlation properties of the signal constellation.
noise, we analyze the detection mechanism at the receiver, comparing Recently, the optimum multiuser detector for general asyn-
different detectors by their bit error rate in the low background noise chronous Gaussian channels was derived and analyzed in
region, and by their worst-case behavior in a near-far environment where
the received energies of the users are not necessarily similar. Optimum [1]. The optimum detector significantly outperforms the
multiuser detection achievs important performance gains over conven- conventional single-user detector at the expense of a
tional single-user detection at the expense of computational complexity marked increase in computational complexity-it grows
that grows exponentially with the number of users. It is shown that in the exponentially with the number of users.
synchronous case the performance achieved by linear multiuser detectors The purpose of this paper is to investigate new low-cor-
(whose complexity per demodulated bit is only linear in the number of
users) is similar to that of optimum multiuser detection. Attention is plexity multiuser detection strategies that approach the
focused on detectors whose linear memoryless tramsformation is a general- performance of the optimum detector and to gain further
ized inverse of the matrix of signature waveform crosscorrelations, and on insight into the performance of the optimum multiuser
the optimum linear detector. It is shown that the generalized inverse detector. Our attention in focused on symbol-synchronous
detectors exhibit the same degree of near-far resistance as the optimum channels, where the symbol epochs of all users coincide at
multuser detector;, the optimum linear detector is obtained subsequently,
along with sufficient conditions on the signal energies and crosscortela- the receiver. Although in practice this assumption rules out
tions to ensure that its perfornmance is equal to that of the optimum the important class of completely asynchronous code-divi-
multiuser detector. sion multiple-access systems, it holds in slotted channels,

and its study is a necessary prerequisite for tackling the
I. INTRODUCTION general asynchronous channel by allowing us to gain some

ODE-DIVISION multiple-access is a multiplexing appreciation of the main issues in the simplest possible

technique where several independent users access si- setting.

multaneously a multipoint-to-point channel by modulating The performance measure of interest is the probability

preassigned signature waveforms. These waveforms are of error of each user. In multiuser problems it is often

known to the receiver, which observes the sum of the more convenient and intuitively sound to give information

modulated signals embedded in additive white Gaussian concerning the error probability by means of the efficiency,
noise. If the assigned signals were orthogonal, then a bank or ratio between the effective signal-to-noise ratio (SNR)

of decoupled single-user detectors (matched filters fol- and the actual SNR, where the effective SNR is the one

lowed by thresholds) would achieve optimum demodula- required to achieve the same probability of error in the

tion. In practice, however, orthogonal signal constellations absence of interfering users, and the actual SNR is the

are more the exception than the rule because of bandwidth received energy of the user divided by the power spectral
or complexity limitations (the number of potential users density level of the background thermal white Gaussiancan be very large), lack of synchronism, or other design noise (not including interference from other users). Noteconstraints. Therefore the question of interest is how to that since the single-user error probability is a one-to-onefunction of the SNR, the efficiency gives the same infor-

mation as the error probability. Its limit as the background
Gaussian noise level goes to zero, the asymptohic efficiency,

Manuscript received February 27, 1987; revised October 21, 1987. The characterizes the underlying performance loss when the
material in this paper was partially presented at the 25th IEEE Confer- dominant impairment is the existence of other users rather
ence on Decision and Control, Athens, Greece, December 1986. This
work was supported in part by the U.S. Army Research Office under than the additive channel noise. Denoting the power spec-
Contract DAAL03-87-K-0062. tral density level of the lackground white noise by a2, the

The authors are with the Department of Electrical Engineenng, Pne- k th user asymptotic efficiency of a detector whose k th
ton University, Princeton, NJ 08544.

IEEE Log Number 8825697. user error probability and energy are equal to Pk and wk,

0018-9448/89/0100-012301.00 ©1989 IEEE
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respectively, can be written as (I]' bit is only linear in the number of users. Finally, Section
IV investigates the performance of the optimum linear

71k =suP O - re1; imoPk(U)/Q "nY +00 transformation and gives sufficient conditions on the sig-
j'0 nal energies and crosscorrelations to ensure that the

(1.1) asymptotic efficiency of the optimum linear transforma-
tion is equal to that of the optimum multiuser detector.

i.e., the logarithm of the error probability goes to zero with
the same slope as the single-user bit error rate with energy II. SINGLE-USER DETECTION AND OPTIMUM

-qkWk. In this paper we compare the performance of the MULTIUSER DETECTION
various multiuser detectors by means of the asymptotic
efficiency. In the high2 SNR region, the advantage of this Suppose that the kth user is assigned a finite energy
measure over the probability of error is twofold. it quanti- signature waveform, (Sk(t), t - [0, TI), and that it trans-
fies the performance degradation due to the existence of mits a string of bits by modulating that waveform antipo-
other users in a simple, intuitive way, and in contrast to daily. If the users maintain symbol synchronization and
multiuser error probability for which only (asymptotically share a white Gaussian multiple-access channel, then the
tight) upper and lower bounds are known [1], exact expres- receiver observes
sions for the asymptotic efficiency are feasible. K

The main shortcoming of currently operational networks r(t) E bk(j)sk (t - jT) + an(t),
employing code-division multiple-access is the near-far k-1
problem. This refers to the situation wherein the received ts[jT,jT+T] (2.1)
powers of the users are dissimilar (e.g., in mobile radio
networks). Since the output of the matched filter of each where n(t) is a realization of a unit spectral densit shite
user contains a spurious component which is linear in the Gaussian process and (bk(j) (- 1,1 )j is the k th user
amplitude of each of the interfering users, the error proba- information sequence. Assuming that all possible infurma-bility increases to 1/2 as the multiuser inteerrence grows, tion sequences are equally likely, it suffices to restrictthe asymptotic efficiency becomes zero, and the conven- attention to a specific symbol interval in (2.1), e.g., j = 0.
tional single-user detector is unable to recover reliably the It is easy to check that the likelihood function depends
messages transmitted by the weaker users even if signals on the observations only through the outputs of a bank of
with very low crosscorrelations are assigned to the users. matched filters:
However, the near-far problem is not an inherent charac- T
teristic of code-division multiple-access systems. Rather, it Yk f r(t)sk(t) dt, k =1,.... K (2.2)
is the inability of the conventional single-user receiver to 0

exploit the structure of the multiple-access interference and therefore y= (yl,' 'YK) are sufficient statistics for
that accounts for the ubiquity of the near-far problem in demodulating b = (bl,. . ., bK). We investigate ways of
practice. We show that the optimum multiuser detector processing these sufficient statistics, which according to
and other multiuser detectors with much lower computa- (2.1) and (2.2) depend on the transmitted bits in the
tional complexity are near-far resistant under mild condi- following way:
tions on the signal constellation. By near-far resistance we
mean the asymptotic efficiency minimized over the ener- y = Hb + n (2.3)
gies of all the interfering users. If this minimum is nonzero,
and, as a consequence, the performance level is guaranteed where H is the nonnegative definite matrix of crosscorrela-
no matter how powerful the multiuser interference, then tions between the r~signed waveforms:
we say that the detector is near-far resistant. T

The organization of the rest of the paper is as follows. HJ. si(t)s,(t)dt (2.4)
The asymptotic efficiency and the near-far resistance of 0

both the conventional and the optimum detectors are given and its diagonal entries are the energies-per-bit, H,, = w, >
in Section II. In Section III, we introduce the decorrelating 0, of each user; and n ;s a zero-mean Gaussian K-vector
multiuser detector. This detector linearly transforms each with covariance matrix equal to a2H.
vector of matched filter outputs with a generalized inverse Conventional single-user detection is the simplest way to
of the signal crosscorrelation matrix. It is shown that, make decisions based on Yk; demodulation is decoupled
somewhat unexpectedly, the near-far resistance of the and the multiuser interference is ignored, yield ig the
optimum multiuser detector coincides with that of the following decisions for the k th user:
decorrelating detector whose complexity per demodulated

bl = sgn Yk.

'Q(x) =- e(1/2/ )e-/2 du. On the other hand, the optimum multiuser detector
2 in the numencal results of [11 and [21, the efficiency is ndistinguish- selects the most likely hypothesis b* = (br, , bK*) given

able from the asymptotic efficiency for SNR's higher than 7 B. the observations, which corresponds to selecting -the noise
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realization with minimum energy, i.e., distance between the signals corresponding to these two

[ 2 hypotheses is equal to
b* arg min kkr(t)- ()dt K

bar _rnn mnin mmb,si(t)- disi(t)
be -lb I-)l 0-k-I

=arg max 2y -bTHb. (2.5) dk * bk
br (-1.1)K =2 min JHc. (2.10)

The computational complexities of the single-user detector CCE (-1.o.1)K

and the optimum multiuser detector are radically different. k -I

While the time-complexity per bit (TCB) of the single-user Hence the asymptotic efficiency of the optimum mul-
detector is independent of the number of users, no algo- tiuser detector is equal to
rithm that solves (2.5) in polynomial time in K is known. 1 m THE (2.11)
The reason for this is the nondeterministic polynomial Ilk W , _0n

(NP)-completeness of optimum multiuser detection (Ap- (A -
pendix I). This is the highest efficiency attainable by any detector

The performances of the detectors are also quite differ- becau, as a -+ 0 the optimum multiuser detector achieves
ent. It is straightforward to find the kth user probability minimum probability of error for each user. In the two-user
of error of the conventional single-user detector: case, denoting p = R12, (2.11) reduces to

Pk P[Yk>O,'Pb=bk=-] 
-

11=rin 
1,1+2--2pI- F , (2.12)

be- (_ljl)X
b, -- and, similarly for user 2. Unfortunately, no explicit expres-

(Wk - Fb i sions are known for (2.11) in general. In fact, the combina-
i - kQ 'b . (2.6) torial optimization problem in (2.11) is-also NP-complete

be ( 11)K k (Appendix 1).
b- -- 1 Nevertheless, it is indeed possible to obtain a closed-form

In the low baLkground noise region, the foregoing sum- expression for the near-far resistance of the optimum
mation is dominated by the term corresponding to the multiuser detector, because the minimization of the asymp-
least favorable bits of the interfering users, i.e., b, = totic efficiencies with respect to the energies of the interfer-
sgn (,k) Thus the asymptotic efficiency of the conven- ing user waveforms reduces the combinatorial optimization
tional detector is equal to problem in (2.11, to a continuous optimization problem

whose solution is given by the following result.
(-' ) Proposition 1: Denote by R' the Moore-Penrose gener-7fk,=sup(0<r l" limP/ <+l

0 ,;r ,< alized inverse3 of the normalized crosscorrelation matrix- aR. If the signal of the kh user is linearly independent, i.e.,

=max2f0,1 - E , it does not belong to the subspace spanned by the other
i k Wk signals, then 1

S(2.7) 1 k = inf -k (2.13)
= max 2 0,1- E Rik1 ik k

i~k Otherwise, l, =0.

where R is the matrix of normalized (unit-energy) cross Proof Using (2.11) for the maximum asymptotic effi-
correla.ions, i.e., ciency of the k th user, we obtain

H = W1/2R Wil  (2.8) 1
where W = diag ( w,, wK ). It follows from (2.7) that the wm ;-i rin -1 H

conventional k th user detector is near-far resistant (i.e., iok (k -1

its asymptotic efficiency is ounded away from zero as a i1
function of the interfering users' energies) only if Rik = 0 -,,o 0 - W
for all i #0 k, i.e., only if the k th user's signal is orthogonal i , k 4-

to the subspace spanned by the other signals. Otherwise, = rain xrRx

k = inf 71' = 0. (2.9) X* -.
-vk = min (1+2zro,+zTRkz) (2.14)

The kth user error probability of the optimum multiuser
receiver is asymptotically (as a - 0) equivalent to that of, a 3A generalized inverse A of a matrix B is any matrix that sausfies 1.

binary test between the two closest hypotheses that difter ABA - A and 2. BAB - B. The Moore-Penrose generalized inverse is the
in the k th bit (see [11). The square of the Euclidean unique generalized inverse that satisfies 3. AB and BA are Hermitian.
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where Rk is obtained from R by deleting the kth row and follows that
column and ak is the kth column of R with the kth entry Rkc + yak = 0 (2.17)
removed. Henceforth, we denote such a partitioning of a
symmetric matrix with respect to the kth row and column and
by R=[Rk,ak,l], where the rightmost element in the cTak +7 =1. (2.18)
square brackets is the kth diagonal entry. The minimum in
the right side of (2.14) is achieved by any element z* such Notice that y 0 0, for otherwise c would belong to the null

that space of Rk and would not be orthogonal to ak, which, as
we saw, is not possible. Finally, substituting (2.17) into

kZ* a. (2.15) (2.16) we obtain

Because of the Fredholm theorem [11, p. 115], the solv- 1
ability of (2.15) is equivalent to ak being orthogonal to the 7 k = 1 - cTRkRZRkc
null space of Rk. However, for all z E RK- I the parabola
q(o) = V2 +2vzrak +zrRkz has at most one zero because 1
it is equal to the quadratic form of the nonnegative defi- =1- cRkC

nite matrix R with a vector whose k th coordinate is v and 1
whose other components are equal to z. Therefore, the =1+-cTa
discriminant of the parabola satisfies (zrak) 2 - zTRkz : 0;
in particular, if z belongs to the null space of Rk, then 1 1
zrak = 0. So ak is indeed orthogonal to the null space of - - - (2.19)
Rk. Substituting (2.15) into (2.14) we obtain ' Rk

S=1-Z*rRk Z*  where the second, third, and fourth equations follow from
~1 - RkRz * the definition of generalized inverse, (2.17) and (2.18),

-1 -z*?RkRRkz* respectively.

i R~a (2.16)

Notice that the k th user is linearly dependent if and III. THE DECORRBLATING DETECTOR
only if there exists a linear combination of the columns of In the absence of noise, the matched filter output vector
R that includes the k th column and is equal to the zero is y = Hx. Thus if the signal set is linearly independent
vector. Therefore, if a user is linearly dependent then we (i.e., H invertible), the natural strategy to follow in this
can find x such that Rx = 0 and xk = 1, in which case the hypothetical situation is to premultiply y by the inverse
penultimate equation in (2.14) indicates that k = 0. To crosscorrelation matrix H- . The detector . = sgn H-'y
obtain the near-far resistance of a linearly independent was analyzed in [8], where its performance was quantified
user, we eniploy the following property, which is invoked in the presence of noise. In [6] it was erroneously shown
again later on. (cf. [31) that this detector is optimum in-terms of bit-error

Lemma 1: If the k th user is linearly independent, then rate. Note that the noise components in H-y are corre-
every generalized inverse R1 of R satisfies: (R'R)kj = 8kj, lated, and therefore sgn H- ly does not result in optimum
(RR'),k =3jk and R~k = Rk. (Analogous formulas hold decisions. It is interesting to point out that this detector
for the unnormalized crosscorrelation matrix H.) does not require knowledge of the eneres of any of the

Proof of Lemma 1: Let S = R'R - I. By the definition active users. To see this, let k = yk/ Wk, i.e., Yk is the

of generalized inverse, it follows that RS = 0, i.e., every result of correlating the received process with the normal-

column of S is in the null space of R. However, if the k th ized (unit-energy) signal of the k th user. Then

user is linearly independent, it is necessary that the k th sgn H-'y = sgn W- I/2R- IW- ' 2y
element of each such column be zero. Hence (R'R - I), sgnW-'IR1

=0 for all j = 1,..., K.
Similarly, with S= RR' -I and SR =0, we obtain =sgn R- ',

=8jk. Equivalently, RR Uk = Uk, using the kth and therefore, the same decisions are obtained by multiply-
unit vector Uk. Hence, for any generalized inverses ing the vector of normalized matched filter outputs by the
R, R2,R(R-R)uk0. However, since the kth user is inverse of the normalized crosscorrelation matrix. Apart
linearly independent, it is necessary that the kth element ivreo h omlzdcosorlto arx pr

from the attractive asymptotic efficiency properties shown
of each vector in the null space of R be zero. Hence below for the decorrelating detector, further justification
(R'- R2)kk= for its study is provided by the fact that it is the solution to

Now-we continue with the proof of Proposition 1. Parti- the generalized likelihood ratio test-or maximum likelihood
tioning R + with respect to the kth row and. column, we detector (e.g., [12, ch. 2], [13, p. 291]) when the energies are
have, say, R' = [C, e, ]. Now, computing the submatrices not known by the receiver. This approach selects the
of the partitioned matrix R+R and using Lemma 1, it decisions that maximize the maximum of the likelihood

I
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function over the unknown parameters, i.e., (cf. (2.5)) Proposition 2: If user k is linearly independent every

0Kjd H' - I(H) satisfies

bg t arg m in  min J r(t)- bkSk(t)] dt 7k (H')=i/R k. (3.6)
_I..... K Thus for independent users the asymptotic efficiency of

= arg min min yH - ly + brHb - 2bry the decorrelating detector is independent of the energy of
b -1, .I _, > o other users and of the specific generalized inverse selected.

= arg min min Proof: If user k is linearly independent, we estab-
bC (- I.K W,>0 lished, in Lemma 1 that (H'H)k, = Sk,. Hence it follows, - -. K Tfrom (3.5) that

mR  - + Tb1Y1/RW 2b - 2 ( W(H) 
(3.7)

= sgn karg min kxkx - 2x.Y sgn R -(Y W kUsing the defining properties of generalized inverses

Since in this paper the signal set is not constrained to be (see footnote 2) it is easy to check that if A - I(R),
linearly independent, the above detector need not exist. In then W-1/ 2A W- 1/2 ( I(H), and if B e I(H), then
general, we consider the set I(H) of generalized inverses2  W'/ 2BW'1 2 E I(R). Hence there is an obvious bijection
of the crosscorrelation matrix H and analyze the proper- between I(R) and I(H). Note that H + need not be the
ties of the detector image of R' in this bijection. However, the inverse image

.i = sgn H'y, (3.1) of H+, say R* E I(R), satisfies

which we refer to as a decorrelating detector. WkHkk = Wk(ll / 2R*W / 2 )kk = R*k. (3.8)
The kth user asymptotic efficiency achieved by a gen- Moreover, since user k is linearly independent, Lemma 1

eral linear transformation T can be obtained in a way implies that the denominator of (3.7) is equal to the left
similar to that of the efficiency of the conventional single- side of (3.8) and that the fight side of (3.8) is equal to Rk.
user detector T = I (Section II). The first step is to find Proposition 2 follows.
the bit error probability of the kth user:

In Section IV it is shown that if user k is linearly
Pk 1 P[lk =lXk =-11 = P[(Tlx+ Tn)k>O xk =-1 dependent, then

Pd =
=e[(n~k (rnk,-,k~n~kx~ 71k sup "0a(H')= sup rll(T)=llk,

=P(Tn)k >(TH)kk- (TH)kj 7k U H'6t() =TUPR q (T qX
jkHt e r(H) T G R 

K o

1- K P[ (Tn)k>(TH)kk- (THk i.e., the best decorrelating detector and the best linear
X ( )rkjx. detector achieve' the same kth user asymptotic efficiency.

xk - -) iProposition 3: The near-far resistance of the decorrelat-

(3.2) ing detector equals that of the optimum multiuser detector,

Since the random variable (Tn)k is Gaussian with zero i.e., for all HIGI(H),

mean and variance e.qual to (THTr)kka 2, the sum in (3.2) ihf tlk(H t ) = inf 4k a l,. (3.9)
w>0 !w;O

is dominated as a -+ 0 by the term ,k

21-KQ((TH)kk , I(TH)k )T (33) Proof. If user k is linearly independent, then accord-

- ( k J ing to Proposition 1 the near-far resistance of the opti-
mum detector is equal to the asymptotic efficiency of the

Hence, according to definition (1.1), the kth user asymp- decorrelating detector (Proposition 2), which is indepen-
totic efficiency achieved by the linear mapping T is dent of the energy of the other users. If user k is linearly

(TH)k k- - ,I(TH)kjl dependent, Proposition 1 states that the near-far resis-
T1k tance of the optimum detector is zero, and hence the same

(T) = max(T T (3.4) is true for any detector.

The result of Proposition 3 is of special importance in a
Thus the k th user asymptotic efficiency of a decorrelating near-far environment, where the received signals have
detector with matrix H' is given by different energies and where the energy ratios may vary

continuously over a broad scale if the positions of the
1 H'H)k.- F (H'H) users evolve dynamically. In this environment any decorre-

-k(H)- maxk lating detector, with its linear time-complexity pe, bit,
0'H

t = ~ ax 2 0, r) offers the same near-far resistance as the optimum mul-
tiuser detector, whose time-complexity per bit is exponen-

(3' 5) tial.
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For the case where the signal set is independent, i.e., H hypothesis to the kth bit decision boundary. Thus, in Fig.
is nonsingular (and qd = r (H-') is energy-independent 1, F% is the length of the shortest of the segments AM,
for all users), a geometric explanation for the equality of AO and BO, and F is the length of AP. The result of

k and nd can be given in the two-user case. Recall that Proposition 3 can now be interpreted as follows. Since r
the received signal y satisfies: y = Hx + n and the noise appears as the hypotenuse and d as the leg of a right-
autocovariance matrix is H. To have spherically symmetric angled triangle, q is lower-bounded by the energy indepen-
noise, it is convenient to work in the H- '/2y domain. Here dent -qd However, since the triangle angles vary with
the hypotheses, denoted by A,B,C,D in Fig. 1, are at the increasing energy of the interfering user waveform, there is
points H'/ 2x, with xe ( - 1,1)2. Since in this domain the a particular energy ratio for which the triangle degenerates
matched filter output noise is spherically symmetric and into a line segment. This is the point when n/ reaches its
Gaussian, the decision regions of the maximum likelihood minimum , which is geometrically identical with n1d. For
detector, determined by the minimum Euclidean distance the parallelogram formed by the hypotheses, this is the
rule, are given by the perpendicular bisectors of the seg- case where a diagonal is perpendicular to a side (e.g., AO
ments between the different hypotheses, and the k th user perpendicular to CD).
asymptotic efficiency corresponds to the square of half the
minimum distance between distinct hypotheses differing in
the kth bit. IV. THE OPTIMUM LINEAR MULTIUSER DETECTOR

We now turn to the question of finding the optimum
linear detector. We have seen that this is a fruitful ap-
proach, since a particular type of linear detector, the
decorrelating detector, offered a substantial improvement

M ' in asymptotic efficiency compared to the single-user detec-
A-- - / tor, while its near-far resistance equaled that of the opti-

- /" mum multiuser detector. While we now know that no
/ detector, linear or nonlinear, can outperform the decorre-

. - .*c lating detector with respect to near-far resistance, for
fixed energies it is indeed possible to obtain linear detec-
tors that have a higher asymptotic efficiency than the one
achieved by the decorrelating detector.

We find the linear detector which maximizes the asymp-
Fig. 1. Hypotheses and decision regions in two-user case. totic efficiency (or equivalently minimizes the probabilitytof bit error in the low-noise region) and compare the

The decision regions of the decorrelating detector are achieved asymptotic efficiency to the ones achieved by the
cones with a vertex at the origin, such that application of conventional and optimal detectors. Thus we ask which
H -i maps them to the coordinate axes. Thus in the mapping T: R -* RK maximizes the asymptotic efficiency
H- /2y-domain the decision cones pass through the points of the decision scheme
H"/2e, with e the unit vectors in R2. These points are at . = sgn(Ty) = sgn(THx + Tn). (4.1)
the center of the sides of the parallelogram formed by the The interpretation of this optimization problem in terms
hypotheses, because the unit vectors can be represented as of decision regions is to find the optimal partition of the
half the sum of adjacent hypotheses. So, the decorrelating K-dimension hypotheses space into K decision cones with
detector decision boundaries are parallel to the parallelo- vertices at the origin. The surfaces of these cones deter-
gram sides and intersect it at the centers of its sides. The mine the columns of the inverse T- 1 of the mapping
kth bit-error probability (by symmetry we can assume that monehth cumn of the ne iofithe m ig
the transmitted bit was -1) is the sum of two integrals, sought. Application of T on the cone configuration il
one for each possibilit) for the remaining bit, of the noise used.
density function over the region in which the kth bit is The kth user asymptotic efficiency of a general linear
decoded as 1. In this case the kth bit-error probability can detector, as given by (4.1) was derived in (3.4):
be easily computed by taking advantage of the aforemen-
tioned properties. To this end we rotate, the coordinate 1 _.- E (4.2)
system to let the y axis coincide with the kth-bit decision lk (T) = max(2  j- (.2)
boundary and use the equal distance property of the ( m Fw (T k /. (.
decision boundary to the hypotheses, -to observe that the
two integrals are equal. We then use the spherical symme- The best linear detector has the asymptotic efficiency
try of the noise to identify each integral as a Q-function of
the distance of the hypothesis to the decision boundary. 7k= sup 17k(T). (4.3)
Hence the k th user asymptotic efficiency of the decorrelat- T e RXK

ing detector is equal to the square of the distance of any Hence the asymptotic efficiency of the best linear detector
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is equal to a) Case IpI - 1: Introduce an indicator function for the

( hrv- JhTvI absolute value term:
sup max2 0,- k, p +(w2/w) 2

2 >

v=RK w, VTH, j +(W2 1 )112V2 <0 (4.10)

max2(O, sup k(V)} (4.4) else

,, R( Then
with d(l -p 2)(w2/w)

1 hhv- dvz (1+ 2 p(wVw),2v 2+(w/w )2 )
77k(V) = - .- (4.5) (4.11)

where v denotes the k th row of T. To minimize the Therefore, we should take V2 =- I when this is consistent

probability of Pk, we have to maximize the argument of with the definition of I as a function of v2. Thus

the Q-function, and equivalently maximize the asymptotic 1, if 1 = -1 0 < (w2/wi)I/I2 < - p
efficiency 'q,(V), with respect to the components of the V2 =
vector v. Since the map applied on the matched filter -1, if 1=1 0< (w2/w 1 )" 2 <p
outputs is linear, the asymptotic efficiencies of all the users (4.12)
can be simultaneously maximized, each such maximizationyielding the corresponding row of the map to be applied. As can easily be seen, both values correspond to maxima.
Forldin the ak eonrit, w f the toue casie,. If neither of these conditions is met, the derivative doesF o r th e sa k e o f elan ty , w e first co n sid er th e tw o -u ser case, n o h a e a z r . T e p t m l v u e f r V c n b e d e -
for which explicit expressions for the maximum linear not have a zero. The optimal value for o2 can be deter-
asymptotic efficiency can be obtained, mined by taking a closer look at the behavior of d'/dv2,in Fig. 2.

A. The Two-User Case

Throughout this subsection we denote the normalized d /',/1d
crosscorrelation between the signals by p = R, 2. We first
give an explicit expression for the optimum linear detector.

Proposition 4: The k th user optimal linear transforma-
tion Tk( y) = vry on the matched filter outputs prior to I I

threshold detection is given by

Vr = [1; -sgn pmin (1,lJpl(wk/w,)V2}] (4.6) -p.', -P,-,

[I; -sgnp], if(w,/wk) 1 2 <lPl (4.7) V2.- V2. -pV/ 2

0 otherwise Fig. 2. Behavior of derivative in (4.11).

where bT is the kth row of the decorrelating detector and
(i.k) {(1,2),(2,1)). For both 1=-1 and 1=-1, the derivative of 71 is

Pruof. Without lobs of generahty, let k = 1. We have positive for V2 smaller than the abscissa of the zero of the
derivative (which is equal to - I), and negative after-

] wards. Due to the nonlinearity of -q the derivative has the
H-I Tr= [1; v2] (4.8) form corresponding to I= 1 for V2 < -p(w 2/wl) 1/ 2 and

pW__2 W2  the form corresponding to I = 1 afterwards. Since the
T second branch (for I =1) turns negative before the first

Ih TV 't 1h2Vj one, we have to take the largest value of v2 yielding a
)VTHV positive derivative on the first branch. It can easily be seen

that in the "no-zero" case, -1 < -p(w 2 /wJ)" / 2 < 1, this is
1+ P(W2/Wl)/ 2 V2 - IP(W2/WI)1/2+(w 2/wI) 21 the point of discontinuity, i.e., V2 = -p(W 2/W) 1/ 2. Note

2 that for p = 0 we get J = [1; 01, the identity transforma-
1 + 2p(w 2/w)/20 2 + (w2/wI)V2 tion, as expected, since the users are then decoupled and a

(4.9) single-user detector is optimal. By taking the inverse of R
we also see that in-the no-zero case the optimal transfor-

and the objective is to maximze the nght bide of (4.9) with maticn vector is exactly the corresponding row of the
respect to v2. We consider the case IJp =1 separately. inverse correlation matrix.
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b) Case IpI = 1: Equation (4.9) becomes the second term outweighs the second part of the first
term, so the best one can do is to eliminate it by choosing

lh( 2) = sgn(i + sgn p( w2 /wi)"/ 2 ) - (w2/wt) / . 02= - p(w 1/w 2 ) I/2 (the decorrelating detector). Since this
(4.13) minimizes the noise variance at the same time, it is the best

strategy in this region. If, however,.(w,/w,)/ 2 < Ipl, and
We see that, for (w 2/w 1 )/ 2 < 1, any V2 satisfying V2 sgn p V2 is such that the term p(p + V2(w 2/wt)' /1 ) is positive, it
> -(wl/w 2 )" 21 is optimal, in particular the one given in is a better policy to allow interference from user 2, which
(4.7). Otherwise, the asymptotic efficiency of the best is compensated by the second part in the first term, and
linear transformation is zero, hence all linear transforma- use the residual positive contribution in the first term to
tions are equivalent, increase the SNR as compared to the decorrelating case.

We have seen that this strategy leads to the same perfor-
Substituting the result of Proposition 4 into the asymp- mance as the more complex maximum likelihood detector.

totic efficiency of (4.9), we obtain the following Note that in the two-user case the signal energies and
Proposition S: The k th user asymptotic efficiency of the cross correlations cannot be picked so as to allow both

optimal linear two-user detector equals users optimal performance at the same time. for user I we

need (w2/w)i/2 <jpI <I, whereas for user 2 we need
S I - 21p ( / wk ) w' /wk, if (w/wk)/ 2 <PI (w2 /w)/ 2 > 1/IpI>. 

1 - p, otherwise
(4.14) B. The K-User Case

Unlike Propositions 2 and 5, in the general K-user case
for (i, k) E ((1,2),(2,1)). it is not feasible to obtain an explicit expression for the

The k th user asymptotic efficiency obtained in the asymptotic efficiency achieved by the best linear detector
range (w,/w) 1'2 < jpj equals the optimum asymptotic effi- Propositon 6. The kth user asymptotic efficiency of the
ciency, obtained in (2.12). Even outside the region of best linear detector equals:
optimality, the best linear detector shows a far better
performance than the conventional single-user detector 7 1 ax2, max /(e) (416a
(see Fig. 3), since if wi/wk > p2, then rql is independent of k -w , (-i) e ra
w,/w k , whereas according to (2.7) the asymptotic effi- pok
ciency of the conventional detector is equal to zero for with
W,/wk >-l/p2.

W (e)= max vr'Hv (4.16b)
v(= RK

orlIV - I
ASYMPTOTIC ------ OPTIMUM MULTIUSER OETECTOR rl, a 0
EFFICIENY - CECORRELATING OETECTOR

USER CONVENTIONAL SINGLE-USER DETECTOR jok

- - - - where the ith component of v, is equal to

'. . . e , i k
'\ i = k

Then the maximum i(e) is achieved for such that
1Il I/IjPl j /;7, V° +  k ie

Fig. 3. Asymptotic efficienies in two-user cas (p -0.6). V = "( TH.

There is an intuitive interpretation of the dual behaviorof the best linear detector and of the boundary point (i= 0 i j(4.17)
(wilwk)t/2 = 1p. Let k=1. The input to the threshold (U)i 1, ij

device corresponding to the first user, z, = vry, has three es hr > 0 for j :; k (4.18)
components: h roo 0 h = 0 (4.19)

Zi = W1[0 p2) + P(P + V2 (W2/W1)i/2)] Xi X t0 .(.0

+ wI[(w2/w)/2(p+ V2(w2/wt)i/2)]x 2 + ii (4.15) Proof: Let

where fi is a Gaussian random variable of variance R

Wlo 2[(l- p2)+(p + V2(W2/w 1)t /2)2]. For (w2/wl)I/2 > 1pl, ST = {xRK:hrx }. (4.21)
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From (4.5) we seek Since this is a mi .imization problem of a continuous
convex function ")n a compact convex set, it achieves a

sup hrv- " Ihrv) unique minimum on the set. Since all the functions are
vQR K VrV h j, differentiable, we can apply the Kuhn-Tucker conditions

a u , ( (e.g., [41), to get from condition (1),mrax sup tv hey- Ihrvl) (4.22)
e,G(-.s VGAS, - Hvo+ 2Hf3- V Ve hj AO,

j, k

- max 7(e),with -(e)
e, G -1 .1) hence

1 1 o Xje,1u (4.27)

= sup (hrv - IhrvI)• (4.23) , u kqEO~t k T v

with u, the jth unit vector, as defined before. Equations
From the definition of v. we see that the term in parenthe- (4.18) and (4.19) result fror the Kuhn-Tucker conditions,
ses equals vrHv. Now v e nfS ,S- ejhTv> 0, j 0 k, and condition (4.20) expresses the nonnegativity requirement
since 71' is invariant to scaling of v, maximization of the for the X,. There is one more constraint to satisfy, which is
given functional over R K is equivalent to maximization jTrHj = 1:
over the ellipsoid vtrHv = 1. I

This proves the first part of Proposition 6. We now have l H oH6
to perform two maximizations where the second one has 1 = THt3 =fi5 + , XeJhej =
the explicit form of an exhaustive search. We turn our 0 jok 2X

attention to the inner maximization in (4.16). We first
show that it is possible to replace the feasible set therein We used condition (4.19) to get the last equality, so
by an equivalent convex set, i.e., the asymptotic efficiency
is unchanged if we replace 2X. = v.H6 (e), (4.28)

n (e)= sup v,'Hv by -(e) =  sup vorHv. (4.24) and since
v GRK Ve RK

vrllv, 
-I i1 1 1

j k j 0 k jk j

To show (4.24), let y= HI/2, zr= jth row of H1l. It we get
then follows that hjv= , 1/2-, o Hvy - /

I y12, and 2A Ht° + v°H jk )1 2

n (e)= sup y.ry= sup Iy,,Iylcos a (4.25)
y G RK y6 = R This together with (4.27) completes the proof of Proposi-

1 [y-tion 6.
e,:. 0 e.J, ZoY; In Appendix II we show an explicit procedure for find-
g k k ,/k ing the best linear detector characterized in Proposition 6.

where a is the angle between the vectors yo and y. Since Its asymptotic efficiency is trivially upper- and lower-
the inequality constraints are linear and partition the space bounded by that of the optimum and decorrelating de-
into convex cones with vertex at the origin, the optimal tectors, respectively. For certain values of energies and
angle a is independent of I yj. Either the optimal cos a is crosscorrelations these bounds are attained; sufficient con-
nonnegative, in which case -i(e) is maximized for lyj ditions for this to occur are given in Propositions 7 and 8.
maximal in both versions, or it is negative, in which case Proposition 7: The following are sufficient conditions on
71(e) < 0. In either case, the value of r, which involves the signal energies and crosscorrelations for the best linear
comparison with zero, is unchanged if the maximization is detector to achieve optimal kth user asymptotic efficiency:
performed over the interior of the ellipsoid, which com-
pletes the proof of the claim. (

We now have to consider the following problem: / > max JR,j). (4.29)j-'.,....K\Ik i]' k

e= inf - v Hv. (4.26)

ve R
g

,ru,- I _';0Proof.- In the optimality case, we show in Appendix II
ear,5 < othat ehT > 0 for all j 0 k. If we introduce ek = I this has
,, k to hold also for j = k, othervise we get negative asymp-
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totic efficiency. We can rewrite these conditions as

H 1  ete2 H 2  e1 H. . eteKHIK i - 1
ele 2H21  H 22  .. e2'H2k ... e2e.H2K - 1(4"H D -' I -' I ..1 >  0  (4 .3 0 )

eIeKHKI eKe 2 HK2  "'" eKHr< " HKK JL-*J
where D is the diagonal matrix with ith diagonal element
equal to e,. We now see that a sufficient condition for the i.e., for a dependent user the best decorrelating detector
above inequality to hold for some eI... , eK is has the same asymptotic efficiency as the best linear detec-

tor.
IHjkl > E HjjI, j=1 Pof R, K.

ek Proof: Recall the bijection between I(R) and I(H)

The corresponding e, are e, = sgn H k. Hence (4.29) fol- established in Section Ill. Let R denote the image of Hit
under this bijection. Then, using (3.5) for the last equality,

lows by replacing H~j by RO.i we can write
Note that the above condition can be atisfied by only 7d = W-p k(H) = sup k(W -/RW /2)

one user because k r'S7kU)
l
t  
I(// ) R'r I(R)

/''k > Fj-/IRkjI> >Fh ', for all j. (Rj

Proposition 8: If user k is linearly independent, them ( ) ,( ) VWk
following condition is sufficient for the k th row of the = 

2 0, sup T.

decorrelating detector H' I I(H) to be the best k th user R'G t(R) (RRR'r) kk
linear detector for a given set of signal energies and
crosscorrelations: (4.34)

IHj' <Hk k. (4.31) Since R is nonnegative definite of rank r, it can be written
Proof. We showed that in the terminal case v = using its orthonormal eigenvector matrix T and the r X r

I I T H ignlmti fnneoegnauso ,a
hk/ Hkk is a maximizing vector for voHv, hence there are diagonal matrix A of nonzero eigenvalues of R, as
nonnegative Kuhn-Tucker multipliers Xk, such that, with R=T[A O]TT. (4.35)
(4.27) and (4.28), 0 0

ht H)Then (cf. [101), R' is a generalized inverse of R if and only
V = k = V, + X' e uj if, for some matrices U and V of appropriate dimensions, it

[A-' v ]kk= Vk k can be written as

or RI=TFA V TT (4.36)

I IU UAVj
hk .[( 1-1)e 1,.. . (XK-I)eK Hence, using the corresponding partition of T, we can

F•k write

so h,=l+ejHfk/'H'k 0 k. (4.32) (R'R)kj=rT T1[Ut T~~

Hence (4.31) is sufficient to ensure X, > 0 regardless of (RTIT T2][A

(ei, i*k). =u(TiT[+ kT 2UA?),, (4.37)

Note that in the two-user case, Proposition 5 implies [ A-1 UT r ]
that the sufficient conditions found in Propositions 7 and (RRRt ) kk = uI[TI T] UAUTTk
8 are also necessary. L U U LT i

Proposition 9: If user k is linearly dependent, then = UT( TA -I T[T+ T2UTT
71k= sup 11(H')= sup (T)= ij (4.33) + T1UTT+ TUAUTTf)uA (4.38)

Gl 'I(H) T I RKxK and

_ f 4(Ti+T2 LJA)Ti~uk- IUT(T 1+T2 ATr, 5 '
71 d 2 0, sup j0 k . (4.39)max(Kr juV(T1 + T2UA)A-(T + T.UA) ruk
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Since user k is dependent, u[T2, whose components are We show that x* = ATfrWI 2v* is feasible, and that

the k th components of the eigenvectors to eigenvalue zero, vrWI/ 2T x*
is nonzero. (Otherwise, for all x with Rx = 0, Xk would be e ,rTruj = ejvrWI/2TtA Tru,
zero, which implies that the kth user is linearly indepen-
dent of the other users.) Hence since A is invertible, we =e v*rWI/2RWi/2W-I/2u
can make the change of variables 1

x = (TI + T2UA) r uk (4.40) = jei*rH " .Fw,

to get rh 0 (4.45)

X'TrU, - E - =e > (4.4=
ma 2 jsup "Aw (4.41) since v is feasib!e,rkx*A-lx*u*pw4/ 2T1AA-)AT[Wi/ 2v*

Using the same reasoning as in the proof of Proposition 6 = v*THe = 1. (4.46)

for the best linear detector, we can write Hence x* is feasible, and

R 11 =W/2T 1 x* = voWIT/2TI AT[WI/ 2v*

rdkmax2 0, max sup k-'jWi/2T- (4.47)
x e, R, W W-no ha d..l

eG*(- 1 k" w We know that ki < , since the decorrelating detectorxk A-I x - l ) belongs to the class of linear detectors. We exhibited for

ejxT*Trj 0 each e a feasible vector x*, which satisfied voWI/ 2TIx*
jok 1k(e). Since from (4.43), ni(e) > vTWI/2 Tlx for all feasi-

(4.42) ble x, we have, for all e, qd(e)>_ iit(e). Hence ii >  ,

where the ith component of v, is equal to which establishes (4.33).

(-e,, iok Since the kth user asymptotic efficiency depends only
(.) , i=k' on the kth row of the applied linear transformation,

optimization of 71k(H t ) -over the class of generalized in-
-m 20' mx I verses for each dependent user k, yields different rows,S  1 max2 0, kax (e) (4.43a) each belonging to a different generalized inverse. Conse-

wA ejE (- tecllcin pia
jo k quently, the collection of the K optimal rows need not be a

with generalized inverse.

rI(e) sup vW 1 2Tx (4.43b) Finally, notice that the near-far resistance of the opti-

X e Rmum linear detector is equal to that of the optimum

xrA'x-1 detector, since it is shown in Proposition 3 that a particu-
ejxTTuj o lar type of linear detector, namely, the decorrelating detec-

jy k tor, achieves optimum near-far resistance.

whereas the k th user asymptotic efficiency of the best
linear detector equals (cf. (4.16)), V. CONCLUSION

I max2 0, max 711(e) The main contribution of this paper is the establishment
Wk  e (-1. 1) of the fact that a set of appropriately chosen memoryless

j k linear transformations on the outputs of a matched filter

with bank exhibits L substantially higher performance than the

k71(e) = sup vTHv. conventional single-user detector, while maintaining a
°e RK comparable ease of computation. Moreover, the near-far
H, - I resistance of all proposed detectors is shown to equal that

eh3"v z 0 of the optimum multiuser-detector.
j, k Even though the worst-case complexity of the algorithm

Let used to find the best linear detector is exponential in the
number of users, in a fixed-energy environment this com-

v* argrik(e) arg max V Hv. (444) putation needs to be carried out only once; hence the
= real-time time-complexity per bit is linear, in contrast to

t4 10 - Ithopiu mltuedeetrMoevrareonfejhjo the optimum multiuser detector. Moreover, a region of
jh, k signal energies and crosscorrelations exists in which the
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optimal linear detector achieves optimum asymptotic effi- With this choice, (I,. .,1.) is a "yes" instance of PARTITION if
ciency. and only if

The decorrelating detector is easier to compute than the ma 2bry - bHb 0. (A.1)
optimum linear detector, and it exhibits either the same or bca-t.i)K

quite similar performance, depending on the energies and Proposition 10 can be generalized [2], (181 to deal with arbi-
correlations. Since the decorrelating detector does not re- trary finite alphabets which are not part of the instance (and
quire knowledge of the transmitters' energies and it hence are fixed) of MULTIUSER DETECTION, i.e., the problem is
achieves the highest possible degree of near-far resistance, inherently difficult when the number of users is large, regardless
it is an attractive alternative to the optimum detector in of the alphabet. size. It is an open problem whether MULTIUSER
situations where the received energies are not fixed. The D-EEcnON remains NP-hard when H is restricted to be Toeplitz.
only requirement for the signal of a user to be detected If this is the case, then it can be shown (18] that the problem of
reliably by the decorrelating detector regardless of the level single-user maximum likelihood detection for intersymbol inter-
of multiple-access interference, is that it does not belong to ference channels [17] is NP-hard in the length of the interference.

The usefulness and relevance of Proposition 10 stem from thethe subspace spanned by the other signals-a mild con- fact that when the users are asynchronous, the cross correlations
straint that should be compared to the condition necessary between their signals are unknown a priori and the worst-c' .
for reliable detection by the conventional single-user detec- computational complexity over all possible mutual offsets is the
tor, i.e., that the signal is orthogonal to all the other complexity measure of interest since: it determines the maximum
signals. achievable data rate in the absence of synchronism among the

The most interesting generalization of the results of this users. Actually, no family of signature signals is known to result
paper is the asynchronous code-division multiple-access in optimum demodulation with polynomial-in-K complexity for
channel.' Due to the fact that in the asynchronous case the all possible signal offsets. Thus even if the designer of the signal
channel has memory, a K-input K-output linear discrete- constellation were to include as a design criterion the complexity
time filter will replace the memoryless linear transforma- of the optimum demodulator in addition to the bit-error-rate
tion studied in this paper. performance (which dictates signals with low crosscorrelations),

he would not be able to endow the signal set with any structure
that would overcome the inherent intractability of the optimum

APPENDIX I asynchronous demodulation problem for all possible offsets.
This appendix gives a summary of the results in [18]. We show The performance analysis of the optimum receiver for arbitrarythat the problems of optimum multiuser demodulaton and solv- energies and crosscorrelations is also inherently hard. According

ing for the maximum asymptotic efficiency are nondetermimstic to (2.11) the maximum achievable asymptotic efficiency is ob-
polynomial time hard (NP-hard) in the number of users and taied as the solution to mltiuser asymptotic efficiency.
therefore do not admit polynomial time algorithms unless such MULTIUSER ASYMPTOTIC EFFICIENCY-
algorithms are found for a large class of well-known combinato- Instance: Given K -Z', kG (1, K ), and a nonnega-
rial problems including the traveling salesman and integer linear tive definite matrix H C-Q r;
programming. According to (2.5), the selection of the most likely Fina" the k th user maximum asymptotic efficiency,
hypothesis given the observations is the following combinatorial 1
optimization problem. 7k - min crHc.

Wk (r {-I,lI)

MULTIUSER DETECTION- e 0o
Instance: Given K e Z , y G QK and a nonnegative defi-

nite matrix H r QXK; *Proposition 11: MrTIUSER ASYMPT011C EFFIENCY is NP-hard.

Find {b* G ({- 1,l)) that maximizes 29ry- brHb. Proof: The proof is divided in two steps. First, -1/0/1
KNAPSACK is polynomially transformed to .MLrIUSER ASYMP-
PTOTIC EFFICIENCY. Then, -1/0/1 KNAPSACK is shown to be

Proof: The proof of NP-hardness of MULTIUSER DETECTION NP-complete. In analogy to the 0/1 KNAPSACK problem (e.g.,
can be carried out by direct transformation from the following [16D we define
NP-complete problem [15]. -1/0/1 KNAPSACK-

PARTITION- Instance: Given L e Z +, G 6 Z+ and a family of not neces-
Instance: Given LE Z, '/j r Z +, i = 1,..., L, }; sarily distinct positive integers
Question: Is there a subset Ic (1,..., L such that 1 eZV, i 1, ,)A,,I -5E,Eti {1 A? , i-,..

Given 4,..., we choose the following instance of Question: Are there integers c, (=- 1,0, 1), i -1,. ., L such
MULTIUSER DETECTION: that E.clG =G?

K-L We transform - 1/0/1 KNAPSACK to MtJLTIUSER ASYMPTOTIC

hi -. lil EFFICIENCY by adding a user. Given {G,I,,..,1 }, denote
/L+I -G and construct the following instance: K - L+1, k = L

yk-O0, k k-1,... , K. + 1, hti-flij, 1-5i, j<5K.

The Kth user asymptotic efficiency is equal to zero if and only
"Note added in proofi This has now been accomplished in the compan- if (G, ,,- . -, /) is a "yes" instance of - 1/0/1 KNAPSACK. To

ion paper [19], using a different approach. see this, note that we can fix - - in the right side of (2.11)
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without loss of generality. Then, hTv - 0, i B, where

rain hKx + _ [-2hK} +C. ,,B
1 ( '-t )

G-"' min G- . n 1 (A.2) + ,e

The proof that -1/0/1 KNAPSACK is NP-complete can be Hv+ vH e
-found in [18].

Comment: Recall that this procedure has to be repeated for all

APPENDIX 1I the different {e.} in search of the maximal ql(e) value, until
either the efficiency -q(e) reaches the upper bound given by the

We give here an explicit procedure for finding the maximizing optimal detector, or all 2K possibilities have been exhausted.
vector 6 given implicitly by Proposition 6. The idea is the Prior to running the algorithm, the sufficient conditions given in
following: condition (4.19) states that if the maximizing vector 6 Propositions 8 and 9 should be checked.
lies in the intersection of a subset oftthe delimiting hyperplanes
with equations hi5 = 0, j r S, with S the index set of the specific Proof: Conditions (4.17) and (4.19) are obviously satisfied
hyperplanes, only the A,, j eS are possibly nonzero and enter by construction of 6 in C, and the requirement hT - 0 for the
into the expression defining B. Thus we have ISI equations with possibly nonzero A, in B. To prove conditions (4.18) and (4.20),
{SI unknowns, which we can solve to get the X, and then B. To consider the system of IBI linear equations in JBI unknowns of B.
state (and prove the correctness of) an algorithm that finds the From A the set B is matched, and satisfies C(j) = yes for all
optimum linear transformation, the following terminology is used. j# k, j 1 S, We have to show a) X, ;>-0, for all i - 1,2,. •., K;

Definition 1: Let S be an index set {.Ij'2," ,) 0<n< and b) CB(j) -yes for all j k, j eS. is equivalent to condi-
K-1, with j,,...,jr(,...,K)-(k), labeled in increasing tion(4.18).
order. Define a) X, = 0, i ( B, by construction of the-index set S and B. For

i G B, in step B we solve hT=- 0, all i -1,2,..., Bj.Let IBI-n.
hjo ,, H ... . Then

Ds ( ) -det . M ,. (A.3) hjqo + X . e. HM + --- + X,. eH. =0

hjrtv0  J. j-- hjrv.+ X.eH, + .+ XeH v = 0

10hi7. , hhj + JI .e.H. 0. (A5
Definition 2: We introduce an indicator for the second+ tI eiHi+."+ O (a.5)

Kuhn-Tucker condition: Denote by Da the determinant of the coefficient matrix of the

if ej Ds(j) > 0, then Cs(j) = yes, else Cs(j) =no. (A.4) X,,ej,, Since B is a basis and the corresponding matrix is nonneg-
ative definite, D. is strictly positive. Then, by Cramer's rule,

Definition 3: An n-tuple S of (1,...,K)-(k) is matched if D ()
for all i - S: Cs-{,(i) = no. -(A.6)

Definition 4: An n-tuple S contains a basis B if (khlj 6 B) is Do
a basis for (h1, Th (=- S). The numerator is obtained by i row flips and i column flips to

Proposinton 12; Te following algorithm finds a vector 5 s get j, into position (1,1). Since the set B is matched, the
fying (4.17)-(4.26i). S numerator is nonnegative. As obtained above, the denominator is

A. Search for the index set with least cardinality S-c positive, hence X, > 0 for all i e B. This completes the proof of
(1,. -. , K) - (k), for which X,, i r S, are possibly nonzero a).

n .0 b) hk7v - 0, j S . For j,0 S,, j 0 k, with the obtained values
all n-tuples := untried; S := matched for A compute the feasibility expressions:
WHILE n<K-2

wILE there is still an untried n-tuple containing a matched
basis B Gs

select untried matched n-tuple :=S,,, contained matched e [,-.+ E + /
basis := B To o - (
IF for all j 0 S,, j C(j) =- es, RETURN S, B,SrOP 1
ELSE S, -= tried - eDO(j) >0, (A.7)

RETURN D )0

n :=n+1 since Ca(j)-yes. The last equaliiy is obtained by expanding
RETUPN along the first row of D(j). This completes the proof of b). By
"decorrelating detector is optimal," output (2..., K - (k), construction the algorithm terminates after at most K- 2 steps.
STOP.

In part A of the algorithm notice that n - 0 corresponds to a
B. Computation of the A1: solution in the interior of the feasible cone, with all X equal to

icEB: X/=0 zero, and 6- t%/ o,'v' . The corresponding asymptotic effi-
i e B: A, are the solutions of the IBI equations [BI unknowns ciency 9 (e)/wk - THvo/wk - il, which is equal to the asymp-
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totic efficiency of the maximum likelihood detector as given by The feasible set in (A.10), F - (vIfHv = (1/uA)u, ), is rionempty*
(2.11). On the other hand, n '-1 corresponds to a solution on (e.g., it contains the set {(1/)h1,Ht1r1(H))), =ad for
exactly one of the delimiting hyperplanes, with exactly one X all v e F, vk =,i* k . Hence -q(e) =l1/Vtj , and with (3.8),
nonzero (call it Xj), and (1/w)Y 9 (e) =I/R+ , which is the energy independent asymp-

( h totic efficiency of the decorrelating detector for independent
" 1 - !j. ' (A.8) users.
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7 Computational Complexity of Optimum Multiuser Detection'

Sergio Verd6 2

Abstract. Optimum centralized demodulation of the independent data streams transmitted simul-
taneously by several users through a Code Division Multiple.Access channel is considered. Each
user sends an arbitrary assigned signal waveform, which is linearly modulated by symbols drawn
from a finite alphabet. If the users are asynchronous, the optimum multiuser detector can be
implemented by a Viterbi algorithm whose time-complexity is linear in the number of symbols
transmitted by each user and exponential in the number of users. It is shown that the combinatorial
problem of selecting the most likely transmitted data stream given the sufficient statistics (sequence
of matched filter outputs), and the signal energies and cross-correlations is nondeterministic poly-
nomial-time hard (NP-hard) in the number of users. And it remains so even if the users are restricted
to be symbol-synchronous.

The performance analysis of optimum multiuser detection in terms of the set of multiuser asymptotic
efficiencies is equivalent to the computation of the minimum Euclidean distance between any pair
of distinct multiuser signals. This problem is also shown to be NP-hard and a conjecture on a
longstanding open problem in single user data communication theory is presented.

Key Words. NP-complete, Hypothesis testing, Code Division Multiple Access, Gaussian cc.'nnunica-
tion channels, Maximum.likelihood sequence detection.

1. Introduction. The purpose of hypothesis testing problems is to select a so-
lution (decision) from among a finite set of possible solutions (hypotheses).
Typically, the number of hypotheses is small, in which case the inherent com-
binatorial optimization nature of the problem does not play any role and the
main question is to obtain the values of the likelihood function or other finite-
dimensional set of sufficient statistics. In this paper we study a data demodulation

- problem where the reverse situation is encountered: it is straightforward to obtain
a set of scalar sufficient statistics but the number of hypotheses is very large.

An important problem arising in multipoint-to-point digital communication
networks (e.g., radio networks, local-area networks, and uplink satellite channels)
is the optimum centralized demodulation of the information sent simultaneously
by several users through a Gaussian multiple-access channel. Even though the
users may not employ a protocol to coordinate their transmission epochs, effective
sharing of the channel is possible because each user modulates a different
signature signal waveform which is known by the intended receiver (Code
Division Multiple Access (CDMA)). Recently [1], optimum multiuser detection
has been shown to offer important gains in bit-error-rate performance over
single-user detectors, which are conventionally used in practice and neglect the
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2 Department of Electrical Engineering, Princeton University, Princeton, NJ 08544, USA.

Received December 17, 1986; revised June 1, 1988. Communicated by Israel Cidon and InderS. Gopal.4_.

I



304 S. Verddl

presence of interfering users. The optimum multiuser receiver can be viewed as
a bank of single-user detectors followed by a common algorithm that selects the
most likely transmitted symbols. The structure of this algorithm depends crucially
on whether or not the users maintain symbol synchronism. In the synchronous
case, it is enough to maximize a quadratic function, while in the asynchronous
case the way to get rid of the interference among the users is to employ a version
of the Viterbi forward dynamic programming algorithm [2], whose time-
complexity is exponential in the number of active users. It is shown in this paper
that the problem is nondeterministic polynomial-time hard (NP-hard) in the
number of users, and hence there exists no polynomial-time algorithm for
optimum multiuser detection unless such an algorithm is found for a large class
of combinatorial problems, such as the traveling salesman and integer linear
programming problems. It is shown that the problem remains NP-hard even in
the synchronous case despite an earlier claim of existence of polynomial solutions
[3] for that case.

In Section 2 the multiple-access channel model and the maximum-likelihood
detection problem are formulated and it is shown that optimum multiuser detec-
tion is NP-hard in the number of users. In Section 3 it is shown that the
performance analysis of optimum multiuser detectors is intrinsically difficult due
to the fact that the computation of the minimum distance between any pair of
distinct multiuser signals is also NP-hard. Finally, Section 4 summarizes the main
points of the paper, discusses suboptimum alternatives, and presents a conjecture
on a longstanding open problem in data communication theory.

2. Optimum Multiuser Detection. Assume each of K users transmits indepen-
dent symbols by modulating a preassigned waveform from a signal constellation
{sk(t), t e [0, T], k = 1,..., K}. If the users cooperate to maintain symbol syn-
chronism, the receiver observes the sum of the modulated signals imbedded in
noise, i.e.,

K
(1) r(t)= Y bkS,(t)+n(t),

k-!

where the symbols bk, k = 1,..., K, are drawn by each user from a finite alphabet
A. A reasonable decision rule is to select the set of symbols corresponding to
that signal among the possible ones that resembles most closely (in a mean-square
sense) the received waveform. If the noise is Gatussian and white, then this rule
is optimum in the maximum-likelihood sense. If, furthermore, all vectors b =
(b,..., bK) e Ak are a priori equiprobable, then the minimum distance rule gives
the maximum-a-posteriori (MAP) decision. In the single-user case, this detc-.tor
is implemented by comparing the output of a matched filter with a set of
thresholds. Analogously, in.the multiuser problem we have

I K
(2) arg min r(t)- bksk(t) =arg max 2bTy-brHb,

beAK I k-i beA K
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where y=(y, ..2 ( YK), Y =JoT sk(t)r(t) dt, i.e., Yk is the output of the matched
filter of the kth user signal and the entries of the nonnegative definite matrix H
are given by r
(3) hj = f sj(t)sj(t) d.

If the signal waveforms are orthogonal, then H is a diagonal mrtrix and the
maximization in (2) decouples into K single-user problems. Otherwise (in prac-
tice, there may be bandwidth or complexity constraints that prevent the designer
from choosing an orthogonal signal set), a combinatorial algorithm is required
to solve the quadratic optimization (2) over the finite set AK, given the vector of
sufficient statistics y and the signal cross-correlations H. Since the set of quantities
{bTy, be AK} can be computed in O(IAIK) operations, an upper bound on the
time-complexity per bit (TCB)3 required to solve (2) is O(IAIK/K loglAI). This
is the best available upper bound; in [3] it is claimed that a receiver whose
complexity is polynomial in the number of users (basically, ifA ={-1, +1}, select
the sign of the components of Hy) is optimal. Unfortunately, this claim is
erroneous; the mistake in the derivation of the detector is commited in equation
4 of [3] where it is implicitly assumed that the symbols put out by the detector
are uncorrelated with the noise component of the matched filter outputs.

More significant in practical applications is the case where the users are
mutually asynchronous, and indeed one of the chief advantages of CDMA
over other channel sharing strategies is that no type of coordination among the
users is required. Now, however, (1) is no longer a valid model. The delays
{frk, k = 1,..., K} account for the offsets between the signaling epochs and (1)
has to be generalized to

M K
(4) r(t) = Z Z bk(i)sk(t-iT--'rk)+n(),

i--M k-I

where by convention sk(t)=0 for t [0, T]. Now we can no longer restrict our
attention to the one-shot case because optimum decisions are based on the whole
received waveform due to the interference between the symbols. The optimum
receiver [1] for the asynchronous case in the sense of selecting the most likely
sequence of symbols consists of a front-end of matched filters (just as in the
synchronous case) followed by a Viterbi dynamic programming algorithm with
IAIK - states and a periodically time-varying branch metric. The TCB of this
decision algorithm is O(JAIK/loglA]), and hence the penalty in time-complexity
due to the lack of synchronism between the users is slight. The usefulness and
relevance of the computational complexity results proved in this paper stem from
the fact that when the users are asynchronous, the cross-correlations between

3 The time-complexity per bit is defined as the limit of the ratio of total time to the number of
demodulated bits as this goes to infinity. Note that any preprocessing of the signal cross-correlations
does not affect TCB,

" z L i .. ... .
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their signals are unknown a priori, and the worst-case TCB over all possible
mutual offsets is the complexity measure of interest since it determines the
maximum achievable data rate in the absence of synchronism among the users.
Actually, no family of signature signals is known to result in optimum demodula-
tion with polynomial-in-K complexity for all possible signal offsets. So even if
the designer of the signal constellation were to include in his design criterion the
complexity of the optimum demodulator in addition to the bit-error-rate perform-
ance (which dictates signals with low cross~correlations), he would not be able
to endow the signal set with any structure that would overcome the inherent
intractability of the optimum asynchronous demodulation problem for all possible
offsets. On the other hand, in the synchronous case, the designer of the signal
constellation has more control on the cross-correlations (subject to constraints
such as bandwidth or number of chips per symbol in Direct-Sequence Spread-
Spectrum), and it is conceivable that there exist synchronous signal design
constraints that result in families of signature signals whose structure can be
exploited to result in optimum polynomial-time decision algorithms. This is the
reason why the computational complexity results of this paper appear to be more
relevant to asynchronous channels even though for the purposes of the proofs
in our lower bound analysis we may restrict attention to the special case where
all the delays coincide (,r, = .... ='T), because the optimum multiuser detector
must be able to deal with any arbitrary set of delays.

In order to ascertain that the intractability of the optimum multiuser problem
arises when the number of users is large and the alphabet size is kept constant,
we first fix an arbitrary alphabet A = {a,, ... , a,,} (which is a set of integers
satisfying a, <a,+,), and define a class of instances of the combinatorial optimi-
zation problem for that fixed A.4

MULTIUSER DETECTION
Instance: Given K eZ , ye QK, and a nonnegative definite matrix He QKXK
Find: {b* e AK} that maximizes 2b yTY-bTHb.

PROPOSITION 1. If JAI> 1, then MULTIUSER DETECTION is NP-hard.

PRooF. The proof of NP-hardness of MULTIUSER DETECTION can be
carried out by transformation from PARTITION, an NP-complete recognition
problem. Recall its definition [4]:

Instance: Given LeZ' and { 1 eZ+, i= 1,..., L}.
Question: Is there a subset Ic {1,... , L} such that Z-iatIli =1 , I1 ?

For each instance cf PARTITION, we can find in polynomial time an instance
of MULTIUSER DETECTION whose solution can in turn be processed in

'Note that since the alphabet A is not part of the instance, if a specific A is assumed, then the
corresponding NP.hard result is a corollary to Proposition 1. Actually, for A = {-1, +1), the proof
of Proposition I can be simplified considerably by letting hi = liii and Yk = 0 therein.

g .. ... . . . . . . . . .... .... .. .



Computational Complexity or Optimum Multiuser Detection 307

polynomial time to give an answer to PARTITION. Given II,... IL, we choose
the following instance of MULTIUSER DETECTION:

K =L,
hy = l, j, i 91j,

h, = i max l, (a2-aj-'[2a.-ai-a 2]. , =1,...,

J~ykyk= (al+a2) hkk+ikZ J, k l..K.

jok

Note that this is a valid instance of MULTIUSER DETECTION, because H
is a nonnegative definite matrix. Once the solution to this instance of MULTI-
USER DETECTION is found, we can find the solution to the original instance
of PARTITION, because {IL,...), 41 is a yes instance of PARTITION if and
only if

(5) max 2by-brHb= 1(a,+a 2) Z hi +aja 2 Z (h1 -1I).
beAX L i-I

Equation (5) can be shown by changing the variable in the left-hand side of (5)
b = (a2 - at)z+ (al + a2) and proving that it is enough to restrict attention to the
values zi = 1 in the maximization in (5) (see [5] for details). 0

The foregoing proof shows that the same transformation works if the value of
the diagonal elements of H is arbitrarily increased. Hence MULTIUSER DETEC-
TION remains NP-hard if H is restricted to be strongly diagonal (an important
special case in CDMA with equal-energy users). Note that MULTIUSER
DETECTION was defined for a fixed arbitrary alphabet. Thus, Proposition 1
implies that the problem is inherently difficult when the number of users is large,
regardless of the alphabet size (often a small integer). Conversely, in Section 2
w-% -,aw that the problem is polynomial in the alphabet size for fixed number of

3. NP-hardness of Multiuser Asymptotic Efficiency. In this section we examine
the complexity of the performance analysis of optimum multiuser detection. The
purpose of this analysis is to evaluate the effect of the energies and cross-
correlations of the signal constellation on the bit-eiror-rate of the receiver for an
arbitrary level of background noise. It has been shown [6] that the key perform-
ance measure is the multiuser asymptotic efficiency, or ratio b -tween the exponen-
tial decay rate of the bit-error-rates with and without interfering users. This
parameter effectively quantifies the degradation in bit-error-rate due to the pres-
ence of other users, in situations where the background noise is not dominant.
The asymptotic efficiency of the kth user, 17k, is proportional to the Euclidean

I

I ---
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distance between any pair of transmitted signals whose kth symbols do not agree
(6]. Specifically, assuming synchronous users and antipodal modulation (i.e.,
A = {-1, +1)), the kth user asymptotic efficiency can be expressed as

min Z (b[ -b' b t dt
bl 0b'kf0 I (i -I I t)j I 1,F

(6) inhkk m He.
4 fTS~k(t) dt ekoo

PROPOSITION 2. The following problem is NP-hard:

MULTIUSER ASYMPTOTIC EFFICIENCY
Instance: Given KEZ4 , ke{1,..., K}, and a nonnegative matrix HeZKxc
Find: The kth user maximum asymptotic efficiency,

77k = (1/hkk) min,. (. o,Ij.k,.o ETHe.

PROOF. The proof is divided in two steps, first -1/0/1 KNAPSACK is poly-
nomially transformed to MULTIUSER ASYMPTOTIC EFFICIENCY, and then
we show that -1/0/1 KNAPSACK is NP-complete. In analogy to the 0/1
KNAPSACK problem (e.g., (7]) we define

-1/0/1 KNAPSACK
Instance: L e Z, 0 r Z', and a family of not necessarily distinct positive integers

Question: Are there integers el r {-1, 0, 1}, i = 1,..., L, such that -i li = G?

We transform -1/0/1 KNAPSACK to MULTIUSER ASYMPTOTIC
EFFICIENCY by adding an additional user. Given {G, I,..., 4L}, denote 'L+1 =
G and construct the following instance: K = L+ 1, k = L+ 1, hy = 11j, I -< i,j K.

The Kth-user asymptotic efficiency is equal to 0 if and only if {G, 1., )L
is a yes instance of -1/0/1 KNAPSACK. To see this, note that we can fix Ck = -1
in the right-hand side of (6) without loss of generality. Then,

(7) 7K =-' min hKK + -2,, + -2h + ,mh
O 5e{-I,0.1) t n..l m-r I

lt v K - I

Li6PE{I.O,1I \ n.,3l
ls/KK-I

Now we show that -1/0/1 KNAPSACK is NP-complete. Its membership in
NP is obvious. Note that it is easy to transform -1/0/1 KNAPSACK to 0/1
KNAPSACK ({G, IL..., i} is a yes instance of -1/0/1 KNAPSACK if and
only if {G, It, -11,..., IL, -L}'is a yes instance of 0/1 KNAPSACK). However,
we need to show the reverse transformation, namely, fixing any instance of 0/1
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KNAPSACK obtain an equivalent instance of -1/0/1 KNAPSACK. The idea
is reminiscent of the polynomial transformation of 0/ 1 KNAPSACK to POSITIVE

INTEGER KNAPSACK (see p. 376 of [7]), and it consists of constructing an
augmented instance of -1/0/1 KNAPSACK whose integers are large enough to
force every coefficient to be either 0 or 1. Choose an instance {G, lI,..., 4) of
0/1 KNAPSACK, and construct the following instance of- 1/0/1 KNAPSACK
{D, P , P2L}:

L

D=G+ Z MJ,
J.1I,,t for 1:-j<-L,

P M J-  for L+1<j.2L,

M=I+max 3, G+z /,I .

Then it follows from this choice that for all {ee{-1,0, 1}, 1-<is2L}

2L L L

(8) Z epj-D=-G+Z ejl+Z M'(e-,+-s1.- 1).
iml I,"l Il

It is straightforward to show that M is too large to be a root of any L-degree
polynomial XL. 0 Ijx, where j3,e{-3,-2,-1,0,1} for 1<-isL and 3oeS{- G + I e, e {- 1,O, 1 }, 1 -i- L}, Hence, (8) is equal to zero if and only
if all the coefficients of the polynomial in M of the right-hand side are zero, i.e.,

2L L

Z elp=D €€ Z ej~l=G and {e,=O,e1 +,=lore1 =le1 +,=O l<i<l}.

Therefore, {G, L I..., 4, is a yes instance of 0/1 KNAPSACK if and only if
S{D,p 1, .. . ,P2L is a yes instance of -1/0/1 KNAPSACK. 0

Note that the proof of Proposition 2 shows-in fact that the problem of deciding
whether a signal constellation is uniquely decodable, i.e., whether different
transmitted bits result in the same waveform, is NP-complete.I
4. Concluding Remarks, Suboptimum Algorithms, and Open Problems. It has
been shown that the problem of optimum detection in Gaussian multiple-access
channels is NP-hard in the number of users. This result holds for any nontrivial
alphabet even if the channel is symbol-synchronous. Exponential-in-K optimum
detectors for Poisson multiple-access channels with point-process observations
were obtained in [8]. It can be shown that this problem is also NP-hard in both
the additive-rate and additive-light models of the channel.

I

I
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Not ohly is the optimum decision rule intrinsically difficult, but so is the analysis
of its performance due to the NP-hardness of the computation of multiuser
asymptotic efficiencies. It should be pointed out, however, that in many instances
of signal constellations used in CDMA Direct Sequence Spread-Spectrum systems
[9], the cross-correlations are low enough to pass sufficient conditions [6] ensuring
unit asymptotic efficiency that are computable in quadratic time in K. So, unlike
the situation we encountered in the optimum asynchronous demodulation prob-
lem, the worst-case complexity measure may be overly pessimistic for specific
instances exhibiting low cross-correlations.

What alternatives, then, does the designer have when the number of u1sers is
large? The suboptimum solution currently employed in practice is the bank of
single-user receivers (i.e., a matched filter for each user followed by a threshold).
Unfortunately, this scheme achieves far from optimum bit-error-rate and its
performance breaks down when the signal energies are dissimilar (the near-far
problem) [11. [6], [10]. Therefore, the search for approximation algorithms that
achieve nea optimum bit-error-rate with polynomial complexity appears to be
an open rese. -h area with important consequences in practice. Numerical results
indicate that performance extremely close to the single-user lower bound is
achievable in the bit-error-rate region of usual interest (10- 4 or less) by the
maximum-likelihood multiuser receiver even if the cross-correlation qualities of
signal constellations typically used in practice are considerably relaxed. This is
a sign that the Viterbi-based optimum multiuser receiver possesses an important
degree of redundancy in situations with good signal sets and low background
noise and hence faster decision algorithms achieving similar performance are
plausible. Furthermore, a linear multiuser demodulator whose TCB is linear in
K is found in [10] to achieve the same worst-case asymptotic efficiency over the
energies of the interfering users5 as the optimum demodulator. While for specific

values of the received energies, its asymptotic efficiency (and hence, its bit error
rate) need not be close to the optimum one, its performance is guaranteed to
exceed a high lower bound in all cases of practical interest, thus making this
suboptimum demodulator an attractive choice from both the complexity and
performance standpoints.

Finally, let us consider an interesting special case of the asynchronous optimum
multiuser detection model in (4), namely the single-user intersymbol interference
problem,

r(t)= b(i)s(t-iT)+n(t),
i--Al•

where the duration of s(t) is greater than T. In general, there is no known efficient
method to obtain the most likely sequence of transmitted symbols given the
received waveform (TCB is exponential in the frame length M). However, if the
number of signals that interfere at any given time is bounded by, say, L, then it

5 This is called the near-far resistance, a key measure of the robustness of the system against variations
in the received energies.
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is well known [11] that maximum-likelihood sequence detection can be imple-
mented by the Viterbi algorithm in TCB which although exponential in L is
independent of M. Despite many efforts (e.g., [12]-[14]) motivated by the impor-
tance of this problem in the area of data transmission through bandlimited
channels, no polynomial-in-L algorithm for maximum-likelihood sequence detec-
tion is known. This fact and the results of this paper lead us to suspect that we
may be facing another NP-hard problem. In fact following the same steps as in
Section 2, it can be seen that the most likely sequence of symbols corresponding
to (13) is the one that maximizes 2bry-brHb, where b= (b(-M),..., b(M)),
y=(y(-M),...,y(M)), y(i)=js(t-iT)r(t)dt, and H is the nonnegative
definite Toeplitz matrix (i.e., constant along diagonals) with entries given by
hI = f s(t - iT)s(t -jT) dt. Hence if we specialize L = 2M + 1 = K, the underlying
combinatorial problem coincides with MULTIUSER DETECTION with an
additional restriction on the data:

CONJECTURE 1. MULTIUSER DETECTION remains NP-hard ifH is restricted
to be Toeplitz.

Indeed, it appears that the Toeplitz-condition imposes an analytically incon-
venient restriction on the set of allowable instances. A possible route is to consider
the following restricted version or :he problem.

FIR
Instance: Given L e Z+, E e Z+, and the coefficients of a finite-impulse response
(FIR) digital filter of lcngth L (hieZ, i=O ,..., L- 1).
Question: Does there exist an input sequence (b, e {-I, +1}, i = 0,..., L- 1) such
that the output energy of the FIR is less than E, i.e.,

2L-2 (L- I 2
Z Z bh i <-E 9
i-O \jO

jCONJECTURE 2. FIR is NP-complete.

Similarly, the p,'oblcm of the performance analysis of the single-user intersym-
bol interference 1.haniel is equivalent to finding the minimum distance between
any pair of tm'nsr'itted data streams. This problem for which no polynomial
algorithm in the length of the interference is known can be put as a special case
of MULTIUSER ASYMPTOTIC EFFICIENCY and it is not known whether it
is NP-hard.

References

(1] S. Verdtl, Minimum Probability of Error for Asynchronous Gaussian Multiple-Access Channels,
IEEE Trans. Inform. Theory, 32, pp. 85-96 (January 1986).

(2] G. D. Forney, The Viterbi Algorithm, Proc. IEEE, 6, pp. 268-278 (March 1973).
(3] K. S. Schneider, Optimum Detection of Code Division Multiplexed Signals. IEEE Trans.

Aerospace Electron. Systems, 15, pp. 181-185 (January 1979).

I



312 S. Verd6

(4] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of
NPcompleteness, Freeman, San Francisco (1979).

(5] S. Verdii, Optimum Multi-user Signal Detection, Ph.D. Dissertation, Department of Electrical
and Computer Engineering, University of Illinois at Urbana-Champaign. Report T-151, Coor-
dinated Science Laboratory, Urbana, IL (August 1984).

(6] S. Verdd, Optimum Multiuser Asymptotic Efficiency, IEEE Trans. Comm., 34, pp. 890-897
(September 1986).

(7] C. H. Papadimitrou and K. Steiglitz, Combinatorial Optimization: Algorithms and Complexity,
Prentice-Hall, Englewood Cliffs, NJ (1982).

(8] S. Verdd, Multiple-Access Channels with Point-Process Observations: Optimum Demodulation,
IEEE Trans. Inform. Theory, 32, pp. 642-651 (September 1986).

(9] M. K. Simon, J. K. Omura, R. A. Scholtz, and B. K. Levitt, Spread Spectrum Communications,
Vol. 3, Computer Science Press, Rockville, MD (1985).

(10] R. Lupas and S. Verdd, Linear Multiuser Detectors for Synchronous Code-Division Multiple-
Access Channels, IEEE Trans. Inform. Theory, 35 (January 1989).

(1] A. J. Viterbi and J. K. Omura, Principles of Digital Communication and Coding, McGraw-Hill,
New York (1979).

(12] G. J. Foschini, A Reduced State Variant of Maximum Likelihood Sequence Detection Attaining
Optimum Performance for High Signal-to-Noise Ratios, IEEE Trans. Inform. Theory, 23,
pp. 605-609 (September 1977).

(13] A. P. Clark, Advanced Data-Transmission Systems, Halsted Press, New York (1977).
(14] D. Kazakos, Computational Savings and Implementation of Maximum Likelihood Detectors,

IEEE Trans. Inform. Theory, 24, pp. 124-126 (January 1978).



A Semi-Classical Analysis of
Optical Code Division Multiple Access

David Brady, Sergio Verdd t

D,-partment of Electrical Engineering
Princeton University,
Princeton, NJ 08544

ABSTRACT

In this paper we consider a noncoherent, optical, asynchronous, code division multiple
access (CDMA) system. We present a semi-classical analysis of the error rate for a single-
user, matched-filter receiver that applies for arbitrary photomultipliers and signature
sequence sets, adheres fully to the semi-classical model of light, and does not depend on
approximations for large user groups, strong received optical fields, or chip synchronism.
We compare the exact minimum probability of error and optimal threshold to those
obtained with popular approximations on user synchronism or on the distribution of the
multiple access interference (MAI). For the special case of unity-gain photodetectors and
prime sequences, we show that the approximation of chip synchronism yields a weak
upper bound on the exact error rate. We demonstrate that the approximations of perfect
optical- to-electrical conversion and Gaussian-distributed MAI yield a poor approximation
to the minimum error rate and an underestimate of the optimal threshold. In this paper
we also develop arbitrarily-tight bounds on the error rate for unequal energies per bit. In
the case when the signal energies coincide, these bounding expressions are considerably
easier to compute than the exact error rate.

1. Introduction

Several users may independently access a common communication channel using code division mul-
tiple access (CDMA) modulation. This multiaccess scheme does not use time- or frequency-allocation,
and users may transmit without the delays inherent to multiaccess protocols. In the direct-detection
optical CDMA channel, interference immunity is achieved by the assignment of rapidly varying, on-
off waveforms. These waveforms, or signature sequences, are modulated by the data of each user and

concentrate the transmitted energy into relatively short time intervals in each symbol period. The trans-
mitted signals from the users are then combined on a common optical fiber. Single-user demodulation
is (suboptimally) achieved by correlating the aggregate signal and the signature sequence of the desired
user. As a result, the correlator output is the desired signal in additive interference, which is reduced
through the use of signature-sequence sets with low cross-correlation. A correlator receiver of this type
must know only the timing epoch of the desired user, and a common timing reference need not be sent
to all transmitters.

In this paper we present the error rate of a particular single-user receiver in the noncoherent CDMA
optical fiber channel. "This receiver has been the focusof previous analyses and local area network pro-
totypes (1-3]. In contrast to-previous efforts we have avoided-making approximations to three analytical
obstacles. First, our analysis retains the quantized nature of electromagnetic radiation. While the par-
ticle nature of radiation may be neglected for the analysis of microwave communication systems, optical

t This work was supported by the U.S. Army Research Office under Contract DAAL03-87-K-0062.
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," irzination of a surface is most accurately described by a photon arrival process, a doubly-stochastic
point process whose random rate is proportional to the intensity of the electromagnetic field integrated
over the illuminated surface. In particular, this holds for field intensities typical of received signals in
direct-detection optical systems (4-6]. As might be expected, it is convenient to analyze receivers based
on observations of the received-field intensity, rather than on observations of a point process driven by
this intensity. This approximation is equivalent to neglecting the quantization of energy at the pho-
todetector screen, and is increasingly inaccurate as the received optical power decreases. Second, we

have avoided the use of a Gaussian approximation of the MAI distribution. Due to low-weight signature
sequences, the MAI is additively composed of cross-correlations that are usually limited to a few chips
of coincidence, and its maximum is too small to apply central-limit-theorem arguments. As might be
expected, the derivation of the optimal hypothesis test _1d the error analysis are complicated by the
nature of the MAI distribution and would be simplified if the MAI had Gaussian statistics. Third,
we have avoided a chip-synchronous approximation on the relative delays between the users, in which
case the relative delays are integer multiples of the chip interval. Since CDMA is a form of multiuser
modulation without transmission coordination, the relative delay between any two users is uniformly
distributed on the symbol period. The relative delays affect the distribution of the MAI, which would
be simplified under the approximation of chip synchronism.

Previous work has addressed the error rate of optical CDMA receivers through the use of these
simplifying approximations. A CDMA optical receiver using a post-photodetection (electrical) matched
filter and Gold sequences was analyzed in (I. The receiver decides for the data of the user of interest
based on an observation of the optical intensity, rather than on a filtered point process driven by the

intensity. This appro'ximation is known as "perfect optical-to-electrical conversion," and ignores the
quantized nature of light.. Chip-synchronous transmission was also assumed, and the number of users
was considered large enough to model the MAI as a Gaussian random variable. Finally, the dark current

from the photodetector was ignored. A noncoherent, optical matched-filter CDMA receiver employing
prime codes was analyzed in [2]. This receiver was not limited by the speed of electronic processing as
in [1], since the matched-filter operation was performed optically. The authors assumed perfect optical-
to-electrical conversion and Gaussian-distributed MAI. With these approximations the observation is a
deterministic signal in Gaussian noise, and the authors demonstrated the superior performance of prime
codes over Gold codes by a comparison of the signal-to-noise ratios.

Recently, a two-part paper explored the performance of an optical CDMA system using the optical
matched-filter receiver [7,8]. The authors computed upper and lower bounds to the single-user error rate
for those signature sequences whose periodic cross-correlations are limited to one chip of coincidence.
The analysis ignores dark current and the quantized nature of light. With these approximations the
observation is composed of the desired user's energy in the additive, aggregate interference, and the
receiver compares this statistic to a threshold in order to decide on the transmitted information. Error
rate bounds were obtained by considering bounds on the variance of the single-user interference. Since
the bounds on the variance of each interferer were independent of the corresponding signature sequences,
the authors avoided the need to compute all interference distributions. The upper bound to the variance
was given by the chip-synchronous interference distribution, and the lower bound followed from an ideal

set of codes in which the cross-correlations were strictly less than one chip of coincidence. The error rate
bounds were compared as a function of the threshold, and differed by more than 2 orders of magnitude
for most thresholds and numbers of transmitters of interest. Upper bounds were also computed for the
error rate when the matched-filter receiver is preceded by an optical hard limiter. An ideal optical hard
limiter is a nonlinear device which blocks the incident light for an input intensity below a fixed ninirhum
value, and otherwise limits the output intensity to this minimum value. When the threshold of the hard

limiter is set to the intensity of a single-user, the presence of the desired signal may be knowi exactly.
as before. In the absence of the desired signal, the intensity of the aggregate interference is reduced
and bounded by that of a single user. In this way, an optical hard limiter reduces the error rate by
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clipping the aggregate interference, intensity due'to the overlap of two of more users' waveforms. Due
to the nonlinear operation- of the hard :limiter, though, the output intensity is no longer the sum of
independent signals, and an exact, erro7 analysis is complicated by this nonlinear -transformation. The
authors derived an upper bound to the error rate by overestimating the probability of interference in each
non-zero chip of the dc'sired signature seq-ience. This probability was bounded by randomly selecting
one of the interferers in each non-zero -hip to represent the interference, and the remaining users were
permitted to interfere in the next chip position. Thus, each user could interfere repeatedly until he is
chosen to represent the interference in a particular chip. This work compared the upper bounds to thp
error rate of the matched-filter CDMA receiver with and without an optical hard limiter, and showed
that many more users may be accommodated with the incorporation of the optical hard limiter. In both

upper bounds, the convolution of three of more iid uniform random variables on (0, 1] was approximated
by the Gaussian distribution.

An artifact of perfect optical-to-electrical conversion is "error-free" transmission, which occurs for a
sufficiently small population of interferers. Under this approximation the observable is the total received
energy in the symbol interval, which is additively composed of the desired user's energy and that of the
interferers. Since the MAI has a maximum value which is proportional to the number of interferers, one
may completely separate the ranges of the observable under each hypothesis if the number of interferers is
small enough, and may specify an error-free threshold test. When the random nature of the photodetector
output current is retained, this effect is lost.

In summary, recent analyses of noncoherent, optical CDMA receivers have relied on the approx-
imations of perfect optical-to-electrical conversion, G -ssian-distributed MAI, and chip synchronism.
The accuracy of these approximations is not known. Aow much do the approximations of Gaussian-
distributed MAI and perfect optical-to-electrical conversion change the error rate? Does the approxima-
tion of chip synchronism yield an error rate that is close to the exact error rate? How small is the exact
error rate when the "error-free" condition is satisfied?

In this work we derive the exact error rate for the ,coherent, optical matched-filter CDMA
receiver, which decides for the data of a single user by comparing a photoelectron count to a threshold.
The results adhere fully to the semi-classical model of light and do not depend on limit theorems for
large user groups or strong received optical fields. The analysis is valid for arbitrary quantum efficiencies,
binary signature sequences, random gain distributions, and dark currents, and is broad in app' t ion.
In Section 2 we describe noncoherent, optital CDMA modulation and consider single-user demc tion
based on a conditionally compound-Poisson observation. We derive the probability mass function MF)
of the observation under each hypothesis in Section 3, and use them to determine the optimal shold
and minimum probability of error. What makes the analysis particularly interesting is the fact that
while the formal representation of the PMF for a doubly-stochastic compound Poisson count is readily
derived via conditioning [9], explicit forms are not common. Due to the particular nature of the MAI
distribution, we are able to show that the PMF may be expressed as a straightforward summation. This
expression is derived for independent and identically-distributed (iid) interferers having a distribution
that includes the cases of user asynchronism and chip synchronism. It will be seen that the error rate
expression is simplified when the distribution of the MAI is discrete. In Section 4 we take advantage of

Ig this fact to derive arbitrarily-tight bounds on the error rate which are considerably easier to compute
than the exact error rate. In Section 5 we use the same bounding technique to derive arbitrarily-tight
bounds on the error rate when the interferers' energies are not identical. In Section 6 we focus on
the special case of prime codes, equal energies, and unity-gain photodetectors in order to compare the
optimal threshold and minimum error rate to thce obtained using the approximations discussed above.
The approximation of perfect optical-to-electrical conversion yields poor estimates of-'he error rate and

optimal threshold at moderate incident optical intensities and dark currents. Further, the combined
approximations of perfect optical-to-electrical conversion and Gaussian-distributed MAI together yield
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an underestimate of the optimal threshold and an error rate that is neither an upper nor a lower bound.
We also show that when prime sequences are employed, the chip-synchronous approximation leads to
an overestimate of-the error rate. The validity of these approximations for larger optical powers is also
discussed in Section 6.

2. Optical CDMA Model

During each length-T symbol interval, the -th transmitting laser is amplitude-modulated by the
product of the data, which takes on values in {0, 1}, and an assigned signature sequence. In this work, a
signature sequence is a deterministic, {0, 1}-valued, piecewise-constant function on (0, T], and is specified
by the values that it takes on the N equal-length subintervals (chips) of [0, 2]. We define Pj = P as the
number of non-zero chips in the jth signature sequence, bin as the transmitted symbol of the jth user
in the interval (nT, (n + 1)7], and c(t) as a periodic replication of the jth signature sequence. The
transmitted complex scalar field from the jh laser may be expressed as

( T c1(t - rj)bjnei(vi[tJ]+aJW(t- J)+8J), nT < t < (n + 1)T, (1)

where s is proportional to the optical energy per bit of the transmitting laser, vj denotes the optical
carrier frequency of the jth user, and Oi is the phase offset of the jh laser from the first laser. Thus
we have assumed that all users transmit with identical signal energies. This is not the case in general,
and in Section 5 we consider the more general case of unequal signal energies. The laser phase noise is
represented by ajWj(t), where aj is related to the jth transmitting laser linewidth, Bj, by aj =07/2" .

The relative delays {rj}tC=2 are defined on (0, T) with reference to the receiver of the first user. As there
is no cooperation between the users, it is appropriate to model the relative delays as iid random variables
that are uniformly distributed on the interval [0, T). We shall assume that the symbol rate of each user is
the same, the optical fields of the K users add in a noncoherent fashion, and that each single-user receiver
acquires the timing of its transmitter's symbol epochs. With ideal transmission, (1) also represents the
complex scalar field at the first receiver due to user j.

During the time interval (0, T), the intensity of the total optical field at the receiver of the first user
is

sNK
Ir(t)1 - - Z bj-.cj(t - Tr)p,(0,Trj) + b;ocj(t - r)pt(rj,T), (2)

1/=1

where pt(a, b) is a rectangular pulse of unit height with support [a, b). We are interested in one-shot
detection of the data b0 based on an observation of a photon count in (0, T). The underlying photon
point process is driven by a filtered version of Ir(t)12, which depends on the data blo, only at times
{tlcl(t) = 1, 0 < t < T}. This follows from (2) and the additional fact that rl = 0. By correlating
the received point process in (0,T) with cl(t), one may obtain the photon count during the support
of cl and may thl.-r decide on the data b1o based on this count. This suboptimal processing scheme
is the baeis for the matched-filter CDMA receiver. Since the function cl(t) takes values on {0, 1}, the
correlation is easily achieved at low chip rates by an electro-optic modulator, which allows light to pass
only when cl(t) = 1. A fiber optic tap delay line may be used to achieve the matched-filter operation at
higher chip rates. This all-optical device uses the finite propagation velocity of light to achieve a relative
delay between two optical signals by passing them through fibers of different lengths. The matched-filter
CDMA receiver has been studied in several experiments (2,3] and will be the CDMA receiver analyzed
in this work.

As seen in (1), this CDMA system employs a form of on-off modulation in which no light is trans-
mitted for a "0", and the signature sequence is transmitted for a "1". This receiver has been analyzed
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previously using the point process model [10]. An optical CDMA system employing a different modu-
lation scheme has also been analyzed using the point process model (11]. In that system each user is
assigned two signature sequences, one for each symbol value. The receiver matched-filters the amplified
photocurrent by the difference of the signature sequences of the desired user, and compares the output
to a threshold.

z TP-tter coup ler tmllpeH nn-eo~

LIA t, .interval j

I Figure 1. The optical, noncoherent matched-filter CDMA receiver

The matched-filter CDMA receiver to be analyzed in this paper is shown in Figure 1. The
total received optical signal r(t) is coupled to a I x P beam splitter. Each of the outputs of the splitter are
identical copies of the input signal that are attenuated in intensity by P. The ith tap delays the received1 field so that the optical signal during the ith non-zero chip of the first signature sequence overlaps in time
with the last non-zero chip in the undelayed signal. The delayed signals are noncoherently recombined,
and the aggregate signal is -incident on a photomultiplier screen. The photomultiplier emits a random
number of secondary (output) electrons for each detected photon or thermoelectron, and the matched-
filter receiver compares the secondary electron count during the last non-zero chip interval of the first
signature sequence to a threshold in order to decide on the value of bio. For the remainder of this work,
we denote this secondary electron count by V.

We shall employ a common photomultiplier model, in which the intensity of primary electrons
is given by ajr(t)12 + p, where c is proportional to the quantum efficiency of the photodetector, and
Pi denotes ti~e rate of primary electrons due to an independent dark current. The nth primary electron
yields a random number, gn, of secondary (output) electrons, and the collection {gn} is modeled as an
iid sequence, which is independent of the primary electron point process (12]. The common probability
generating function of the random gains is denoted as G(z) = E=O zkp [g n = k]. It follows that ,V is
a conditionally compound-Poisson random variable given the integrated intensity, which we define as A,

z T  "P0sK

1 el (t)[fair(t)[2 + P] dt = ces blo + d + . bj-1R (rj) + bjojl (j), (3)

and the conditional distribution of K depends only on G(z) and A. Here Rjl(r) and Rl(r) are the
normalized, partial cross-correlations

A N T
Rjl( r)= -5 cj(t -rcjtd

(r) N J cj(t - r)c1 (t)dt,

that represent the contributions to A by user j for the duration of bi- and bjO, respectively. In (3)
d represents the portion of the primary electron count mean due to thermoelectrons. Without loss of
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Figure 2. Probability density function of a7 -type random variable.

generality we set the quantum efficiency of the photodetector to unity, as this affects the distribution
of Y as an attenuation in intensity. For the same reason, we neglect the combining loss in the coupler.

Further, we define x - sb1o = 0 under hypothesis 7o and x =-s under hypothesis %I

In summary, A( is conditionally compound-Poisson-distributed with conditional primary elec-
tron mean A. This conditional mean has a distribution which is shifted to the right under 1i, and the
receiver decides for Ii if ,V exceeds some threshold. In general, a single-threshold test is not-optimum,
although sufficient conditions for the optimality of single-threshold detection have been determined [13-
15]. An important outcome of this work is to determine the threshold which minimizes the error rate of
the receiver. In other words, we shall find the minimum error rate detector among the class of detectors
that compares the count KV to a threshold. Since A( is integer-valued, it is straightforward to find this
threshold given the probability mass functions (PMFs) of K under each hypothesis. We find the PMFs
of A( in the next section.

3. Derivation of P["= n ]

In this section we derive the PMF of the secondary electron count at the integrator output for
an arbitrary photomultiplier and for chip-synchronous or completely asynchronous transmission. This
expres-:on will be used in Section 4 to develop arbitrarily-tight, computationally-efficient bounds on the
cumulative distribution function of A(, and in Section 6 we will use the probability mass functions of
Y in order to compare the exact error rates and optimal thresholds to those obtained using popular
approximations.

In order to concisely describe the statistics of A, we define a 7-type random variable to be a
mixed random variable having point masses at the integers {0, 1,... M} for some positive integer M, and
constant, continuous portions between these integers. For fixed M, the class of 7-type random variables
is parameterized by 2M parameters, each taking values on (0, 1]. If I is a 7-type random variable with
2M parameters, we define

d(i) = PI i] i E {,l,...,M}

c(j) dv = P[IE[v,v+dv) [v,v-+dv) C(j,j+1) jE{O,1,...,M-1),

and we denote the distribution of I as {d(O), d(l),..., d(M), c(O),..., c(M - 1)}. Figure 2 illustrates-i
the density of a -- type random variable.
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Each normalized, partial cross-correlation is a 7-type randomvariable with 2M parameters,
where M is an upper bound on -the set of total cross-correlations {Rjk + Rjk}. This follows in part
from the fact that each partial cross-correlation is piecewise-linear in the relative delay, since it is a
convolution between piecewise-constant functions.t In fact, Rjk(r) attains integer values-at the chip-
synchronous delays r E {f .. n =0, ... N - 1}, and is piecewise-linear between these values. If the
common distribution of the relative delays is discrete on { T, n = 0,... N - 1}, then it is clear that
Rjk(r) is 7-type with c(q) = 0 Vq. It follows that under the assumption of chip synchronism, the
distribution of the partial cross-correlations is 7-type. In the asynchronous case the relative delays are
uniformly distributed on [0,2T, which combined with the piecewise linearity of Rjk(r) also yields a
-y-type distribution. In this case, point masses arise due to constant portions of the cross-correlations.
Further, c(q) is strictly positive if and only-if the normalized, partial cross-correlation takes on both a
value strictly greater than q and a-value less than or equal to q on the set of chip-synchronous delays.
From the piecewise-linearity of Rjk, it is also clear that the distribution of Rik for user asynchronism
may be computed from a knowledge of the function Rjk evaluated only at the chip synchronous delays.
The M = 1, 7-type distributioji has been used in the analysis of optical CDMA systems employing a
subclass of OOCs [7]. This analysis, however, did not employ a point process model.

In this section we will derive the probability generating function (PGF) of A from its condi-
tional compound-Poisson nature, and show that this z-transform has a particularly straightforward and
explicit Maclaurin series expansion. The PMF is the collection of coefficients of this series, and may be
explicitly represented; as follows. By conditioning on {z, (R 2 1, R 21 ),.. (RK1, R r(l)}, the count ,V has
a compound Poisson distribution, whose PGF is given by (e.g., [16])

E V* I x, (R 21, k 2l).... .(RK1, hKl)] - j=2~ b..1j+j~j}Gz (4)

Due to the mutual independence of the pairs {(Rij, R 1 1 )}=2, the closed form of the PGF E [zl I x] may
be found by smoothing each factor in (4) individually. The jth factor depends on the quantity bj 1 Rjj +
bjoRjl, which we describe as the j1h interference mixture. It is clear that the jth interference mixture is
also of 7-type with 2M parameters, and we denote its distribution as {Dj(O), Dj(1),... , Di(M), Cj(O), ... , C3 (M-
1)}. Since the mixture coefficients {bj-, bjo} take values in the set {0, 1}, the distribution of the inter-
ference mixtures is computed easily from the marginals of the partial and total cross-correlations. With
this notation, the closed-form expression of the power series of interest is

IV [z 1~ (G(z)-1)(-+d)1Z X e TI{FZDi(q) exp(qT((z) - 1))

P e(G(z)I)* 1M-1

8 -G(z) Ci(r) exp(r 7(G(z) -i-))} (5)
'=0

We are interested in finding 7 [A = n I z], the coefficient of z' in the power series of (5) about Z = 0.
This power series is straightforward but unnecessarily general for most signature sequence sets of interest.
For example, the number of parameters in the power series is reduced by a factor of K - 1 by assuming
that the distribution of the jth interference mixture is independent of j - that is, the contribution of
user j to the MAI is statistically indistinguishable from the other interferers. We have verified that this
is a reasonable approximation when the signature sequences come from the prime codes, and will drop
the subscript from the distribution of the interference mixtures for the sake of clarity. Also, the power

t We emphasize that in this work -the signature sequences are deterministic and arbitrary. The
randomness in the cross-correlations is due solely to the relative delays.
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series of (5) is concisely written if we define C(-1) C(M) 0. With these simplifications, (5)
becomes

E [zK = e(G(z)1I)(+d)x{TD(q)exp(q!-(G(-) -1))
q0O

P I M 1)K-1 (

T s- G(z) [C(q - 1) - C(q)j (- (6)
q-O

There are 2M terms inside of the braces. Letting nq be the power of D(q), and mq be the power of
(C(q - 1) - C(q)] in a term of~a multinomial expansion of (6), we may express the PGF of A as

kg I (1 -1z! gI 1 (q)n [.3{C(q) --C(q - 1)}]

exp[(G(z) - 1){ + d + , EM° Ifni + mil] (7)
x(1- ((Z))7L=o)l

where the outer summation is over all the indices such that EM o mq + nq = K - 1. We find the PMF
of A" in the following way. Suppose that we knew the coefficients of the following power series

00 (, a)z (G (z) -1)
W(n, 6) G(z)), eIR+, 6E{0,1,2...}. (8)

n=O(-

Recognizing the similarity of the last line of (7) with the right hand side of (8), we could express the
PMF for Af in-'terms of these coefficients as

pie = n I 1= ( -Io )! Mq{ (q) [E{C(q) - C(q - 1)}]}

W; n, { + d + - m l[n + mI]}, E mn] , (9)
1=0 1=0

where the outer summation is over all -mq and nq such that the 2M= mq + nq = K - 1. In fact,
W(n, a, 6) may be calculated by a linear recursion on the integers n and 6. This recursion for W is
most easily seen by re-expressing the following identity using (8)

ea(G(z)-l) ec,(G(z)-I) a(G(z)-1)

(1 - -_ (1 -' G(z))+' ± (1 - G(z))6 ' 6 E {0, 1, 2,....

We recall that G(z) is the PGF of the photomultiplier gain distribution, G(z) = E 0 zIP [g - 1]. It
follows from this substitution that for all n, 6 E {0, 1,2,...} the linear recursion for )A) is

n+11i - P, (g,= o])w(,n + 1, ce, 6 + 1) = P [g = ]W(n + 1 - 1, a,, 6 + -1)+ w(n + 1, c., 6) (10)
I=I

For most photomultiplier models P (g = 0] = 0, which we will assume in the sequel. The initial conditions
of this recursion are also-easily extracted from the definition of W, j

W(O, O,6)'= e' , SE {0,1,2,...} (11)
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and
n k - k l

.(n, 7,9 ) cc ei Pj - n E{o,1,...}.
k=O

The linear recursion for W(j, c, 6) on n-and 6 permits fast, efficient computation for any arguments

n, 6 > 1. Note that the second initial condition for this recursion depends on the probabilities P [Ek=1 g =n],

for n, k E {0, 1, 2,.. .}. These probabilities require iterated convolutions of the PMF of the random gain
gt, may be precomputed and stored for small n and k, and may be approximated accurately for large
n and k. It is easy to show that P 1=1g = n] has an explicit form for random gains that are

shifted-Poisson-distributed in addition to the unity-gain case.

It is helpful at this point to look at (9) in the special case of one interferer and unity-gain
photodetection. In this case (9) becomes

M
P (A( n Ix]= D(j)P [11(d +x + n~

j=O

+ EZCUj){P [II(d + x+i~ n]j-P [1(d+ x++ 14) + n]
j=0

where II(m) is a Poisson random variable with mean m. From this equation, we see that if the interference
takes on a value corresponding to a point mass, then the contribution to the count PMF is a Poisson
PMF, as expected. If the interference takes on a value between the point masses, then the contribution
to the PMF of A( is the difference between two Poisson cumulative distribution functions (CDFs).
This latter fact is due to the piecewise constant nature of the continuous portion of the interference
distribution.

We have shown that the PMF of A( may be expressed as a finite summation of terms involving
the function W. We have also demonstrated that W may be computed by a linear recursion on its integer
arguments. These expressions are valid when the distribution of the normalized, partial cross-correlations
is -r-type (Figure 2) such as in the cases of user asynchronism and chip-synchronism. It should be pointed
out that the number of terms in the PMF summation (9) is exponential in the number of interferers, and
may be prohibitively large for large K. In the next section we show that by modifying the distribution
of the interference mixtures, we may use a special case-of (9) to express arbitrarily tight bounds on the-J PMF as a summation that is bilinear in-the number of interferers K - 1 and the parameter M.

4. Arbitrarily Tight Bounds on 'P [.V < n I x]

Coraputationally-efficient bounds must reduce the complexity of (9) in both the multinomial
Gummation and the computation of W, while controlling the loss of accuracy by a parameter of our
selection. In this section we show that by quantizing the interference mixtures, we achieve all three
objectives. The intuition behind the bounds is demonstrated in the following special-case. Suppose that
each interterence mixture has a discrete distribution on the set (0, M, ,... ,M} containing QA + 1
elements. In: this case -the conditional mean A takes on (K - 1)QM + 1 possible values. When A
has a. discrete distribution, C(j) = 0 Vj, and the conditional CDF of / given z and all partial cross-
correlations is given- by (9) as

P : n I , (R21, 2) ... (RKKI) = EV(t, A,0). (12)
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Since the right-hand side depends only on an initial condition for W, the assumption of a discrete
distribution on A eliminates the need to compute the linear recursion for W. Also, computation is
reduced substantially by noting that the conditional CDF of A( depends on {R

the conditional mean A = x +d+ + Zj =2 bj- Rji + bj0 1 . This is not true for the exact interference

distribution, in which case the conditional, CDF is also dependent on 6 =2 m the total number of
interference mixtures that take on non-integer values. The effect of 6 on the exact PMF may be seen in

(9). This observation allows us to uncondition (12) over the distribution of the (K - 1)QM + 1-valued
conditional primary electron mean A, rather than the joint distribution of the interference mixtures,
which would require (2M + 1)K- 1 terms. Quite simply, a discrete distribution for the interference
mixtures yields a CDF for A that is linear rather than exponential in the number of interferers.

But how do we obtain arbitrarily-tight bounds on the exact conditional error rate P [A( < n I x]
that use a discrete interference mixture distribution? Suppose we quantize each term of the interference
mixture bj-lRjl + bjoRjl with a step size of il, Q E {1,2, ... }, and round-up or round-down to form

bounds on the interference mixtures. That is, we form Al, A. from (3)

K 1 1Ai = + d +-L bj- LQRj + bjo. LQR lJ

j=2

and

K

Au z+ d + -b 1 FQRjl1 + bio rQR 11,
j=2

where IRJ (fRi).is the greatest (least) integer function of R. Although it is obvious that Al < A < Au, T

it is not clear that we may form bounds on the secondary electron count CDF by substituting A1 and L
Au for A. A subtle point is raised by considering the form of A(

n(A)

.K(A) E g (13)
P=1

where H(A) is a conditionally-Poisson count with conditional mean A. Since the random gains gp are
non-negative, K increases with the primary electron count, II. It is easy to show that Al < A implies
'P [II(A) < n] < 'P [II(Al) < n] for all n [17], yet it is not clear from (13) that corresponding bounds
on the CDF of A( follow from this fact. In the lemma below we show that we may achieve bounds onI
P [K n I x] by using the distributions of Al and A.. This is shown by first considering the case when
A is deterministic.

-rI(a)
Lemma 1. Let IH(a) be a Poisson-random variable with mean a, and let K(a) = gk=1 9k,

where {gk} is a collection of nonnegative i.i.d. random variables that is independent of II(a). Let
o <a' <a. Then 1

P [(a) ] -P [(a') <n] , n > O.
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Proof.

! P [.,V(a) _<n] E P I(,) =k] ? (gl + .. + gk _< n]
k=O

0E JP {[1(a) < k] - P (,:,) <5 k - 111'p 19 + ... -+ 9k :5 n]
k=O

E P [1(a) <: k] {P [ +... gk n_] - P [g, +... + gk+l n]}j k=O

k=O

= ,' [.,K(') . n]

The inequality follows from the fact that the Poisson CDF is a decreasing function of the mean. This

Ilemma extends easily to the case when 11(A) is conditionally Poisson with conditional mean A. By
conditioning on A, we have

"? (.AfA) __ n A.] _ P[() < n IA]

from Lemma 1 since both A and A1 are known under this conditioning. The desired result follows by

smoothing with respect to the distribution of A. Lemma 1 allows us to compute an upper bound of thejCDF of Af under each hypothesis by averaging the right hand side of

'P[.,K(A) _< n j z,A., Aj] < "P[.Af(.A..) _< nI , A, au]

over the (K - 1)QM + 1-valued distribution of Al. The tightness and complexity of the upper (and
lower) bounds are controlled by the quantization step size F" It is obvious by comparing the number of

~terms per point of the CDF to those of the bounds that even for modrate numbers of transmitters and

fine quantization; the bounds require significantly less computation.

5. Arbitrarily-Tight Error Rate Bounds for Unequal Energies

~Using Lemma 1, we may form bounds on the count CDF under each hypothesis by developing

bounds on the underlying conditional mean. In the case of equal energies, we may achieve this by
uniformly quantizing each interference mixture, and as the quantization step size decreases, the accuracy

of the bounds improves. In this section we show that the same technique may be applied to the case of

unequal energies.

We may express the conditional mean as

I K

A = x + d + -; E_, s[b-1Rjl + bjoi 11],
j=2

where si is the energy per "1" for user j and x = s1 bl0 . In this case we define Al, A, as

K
A1 = x+d+Y+ b_-LQ-3R rJ+bio1Q RrjJ

j=2 TQ1



E 1 sj 1 j kil
j=2

Note that the quantity - appears inside each quantizer. Unlike the equal-energy case, we cannot form
At and A. by quantizing the partial cross-correlations directly. Instead, each must be scaled by the
appropriate energy sj. However, it is clear that At < A < Au, and we may form bounds on the count

3 K-1CDF using quantization and Lemma 1. The quantized mean may take on at most (MQmax :* + 1) -

(K - 1) values, where M is the maximum for the common interference mixture. The distributions of At
and Au are obviously discrete, and may be computed exactly. More importantly, we may uncondition
(12) by the distribution of Au to obtain a lower bound to the count CDF under each hypothesis. The
bounds on the CDF of A( are most easily seen from (9) with the following abuse of notation. Let

M = Q max(Au - (x + d)), and let D(j) = P [Au = x + d + -I denote the distribution of A in (9).

Since max(A, - (x + d)) is a multiple of 1/Q due to quantization, M is an integer. The idea is to
consider Au as the quantized interference due to one user having an interference mixture distribution
{D(O),... D(M)}. To complete this analogy, we must set K - 1 = 1 in (9). The corresponding CDF
bound is n M

-P[A nI x ] >_. D(j) (ix+d+ 0)
i=Oj=O

Note that we have set s = 1 in (9), since the interference energies are incorporated in the quantization.
An upper bound to P [A( < n I x] follows from At in the same way. It is helpful to note that for unity-gain
photodetection the above bound becomes

M

P[A n I ] E D(j)P [11(x + d + <. n~]j=O

where II(m) is a Poisson random variable with mean m. This follows from the conditional Poisson
nature of A(, when driven by a conditional, mean with a discrete distribution.

6. Example: Equal Energies, Prime Sequences and PIN Photodiodes

In order to compare the exact error rate to the approximations discussed earlier, we must
first compute the 7-type distribution (D(0), ... , D(M), C(O),..., C(M - 1)), which is used in (9). This
distribution may be computed once the signature sequence set and the distribution of the relative delays
are-specified. In this section we focus on the set of prime sequences [18] in the user-asynchronous and
chip-synchronous cases. We shall also assume equal energies for all users.

Since the normalized cross-correlations of prime sequences are bounded above by M = 2,
we must compute {D(O), D(1), D(2), C(0), C(1)} for the chip-synchronous and asynchronous cases (18].
For the prime sequences from GF(31), we have found that the average distributions for the interference
mixtures are given to two significant-digits as

D(0) D(1) D(2) C(0) C(1)
chip-synchronous users *= .57 .36 .07 .00 .00
asynchronous users =. .44 .22 .01 .24 .09

Table 1. Average distributions of the interference mixtures.
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We have verified that the MAI'for prime sequences is well-modeled by a sum of iid random
variables. In-particular, the mean, variance, and third central moment using the average distribution
for each interferer were identical to the exact MAI inoments, while the fourth central moments differed
by less than .004% for 29 interferers. Further, the average distribution of the GF(31) prime sequences
did not differ significantly from those of the GF(11) and GF(17) prime sequences. For this reason we
shall use the distribution in Table 1 for all calculations. It should be pointed out that bounds may be
achieved by considering best and worst case (common) interference distributions, as was done in [8].

10"42u

-0 chip-synchronous

0 .

l6-10 asynchronous users

10 .12

7 9 Number of Users 12 13 14

Figure 3. Comparison of the Minimum Error.Rates For Asynchronous
Users and the Chip-Synchronous Approximation

In Figure 3 we have plotted the minimum error probability of the matched-filter CDMA
receiver for the chip-synchronous approximation and for completely asynchronous transmission. We
have used the weight 17 and length 289 prime sequences from GF(17), an optical energy per user of
s=1000 photons per bit, and a dark current mean of d=50 thermoelectrons per bit. For a single-user
transmission rate of 7 Gigabits per second, these numbers correspond to a peak received single-user
power of 7IZW and a photodetector dark current of approximately 10 • R nA. From Figure 3 we see
that the chip-synchronous approximation upper-bounds the error rate in the asynchronous case by at
least one order of magnitude. The error rates are ordered in this way due exclusively to the differences
of the distributions of the interference mixtures. From Table 1, it may be shown that the means of the
interference mixtures are identical in both cases, while the ordering of the variances coincides with that
of the error rates; Thus the MAI has identical means under these distributions, and second moments
whose ordering coincides with that of the error rates. In the unity-gain case it is easy to show that
E [,V I z] = T, and Var(A/jX) = .'& -- (A) 2 + A2 , which implies that under each hypothesis the mean
of A" is unchanged by the approximation-of chip synchronism, yet the variance of A increases as we
proceed from complete asynchronism to chip synchronism. From the ordering of the minimum error rate
curves in Figure, 3, we see that an increase in- the variance of A" under each hypothesis results in an
increased error rate as the conditional means of A are fixed.

In [7] it was shown by example that the variance of the interference mixture increases under
chip synchronism for optical orthogonal codes that are bounded by one chip of interference. We will

13
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now show that an interference mixture bi_lR 1 + bjoRil has a larger variance under chip synchronism
than asynchronism for arbitrary, deterministic signature sequences. Due to the independence of the
users, this implies that the MAI has a larger variance under chip synchronism. We will prove this in
two steps: we shall show first that each cro6s-coirelation Rij, Rj, and Rj6 + Rjl has a larger variance
under chip-synchronism, and then we shall show that the same is true for the interference mixture.

Lemma 2. The variance of the MAI is greater under chip synchronism than complete
asynchronism.

Proof. Let R(r) denote any of the above cross-correlations. Then the distribution of R(r)
is y-type, and R(-) has an upper bound of, say, M. R(r) is a piecewise linear, continuous function
of the relative delay r E (0, T1. In fact, R(r) is linear between its chip-synchronous values. Due to the
uniform distribution on the delay, and the pliecewise linearity of R(r), it is easy to show that the mean
of R(r) is the same under chip synchronism or asynchronism. (The same is true for the interference
mixture by similar arguments.) Thus, it is sufficient to show that the second moment of R(r) is greater
under chip synchronism than complete asynchronism.

The distrbution of R(r) under complete asynchronism has the form (d(0),... d(M), c(0),...,
c(M - 1)), where c(j) represents a piecewise constant portion between j and j + 1. Equivalently, this
distribution may be described by (d(o),..., d(M), {umk}, for -m, k = 0,... M and rr < k), where

is the height of a square pulse on the interval (m, k). These square pulses overlap, and the sum

of all such that (j,3 + 1) C (m, k) is equal to 6(j). The value Umk is equal to the fraction
of consecutive values of {m, k} or {k, m} in the sequence of chip synchronous values of R(i'). We
introduce this decomposition for the following two reasons. First, the second moment of R(r) is linear
in each of the umk. Second, the probability mass on the interval (m, k) represented by Umk under user
,asynchronism vanishes -to the endpoints m and k under chip synchronism in such a way as the center of
mass is conseryed on the interval (m, k). The latter fact is the reason that the means of R(r) coincide
under chip synchronism and complete asynchronism. Because of these two facts, it is sufficient to show
that under the constraint of a constant mean, the uniform distribution- on (m, k) has a smaller second
moment than the discrete distribution on {m, k}. this condition is easy to show. and it follows that
the variance of-any-cross-correiation R1 l, Rl, or Rl + k11 between deterministic sequences is greater
under chip synchronism than asynchronism.

Now we would like to show that the interference mixture bi-I Ril + bioRil has a higher vari-
ance under chip synchronism. Since the means of this random variable coincide under chip synchronism
and complete asynchronism, it is sufficient to show that the second moment of the interference mixture
is larger under chip synchronism. But this follows from the same fact for the cross-correlations, since
the distribution of the interference mixture is a convex combination of the marginals of Rjl, jl, and
Ril +,R11.

Since the variance of each interference mixture increases under chip synchronism, the same
is true for the MAI.=

Direct-detection communication systems often require large received optical energies to achieve
,an acceptable error rate. Therefore, we are interested in the asymptotic distribution of Y as a grows
without bound. In the-simplest case when A is deterministic (A( is compound-Poisson) it is well-known
that a normalized version of A( converges in distribution to a Gaussian random variable. The asymptotic
distribution has also been established for random A and unity-gain photodetection (19,201. This result
requires that ii - co and o0 A > 0, and shows that the asymptotic -distribution depends on the limit

of p = -2- If limp 0, then-the normalized count converges in distribution to a standard Gaussian
A-

random variable. If limp = oo, then the normalized count converges in distribution to lim A _ZA
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Finally, if 0 < limp < oo, then the normalized count converges in distribution to an independent
mixture ofl and a standard Gaussian. This result has also been generalized to include the case of
photomultiplication [21]. We state this result below.

Lemma 3, Let H be a conditionally Poisson random variable with mean A when conditioned
on A, and let iV = 5=0 9k, where {9k} are iid positive random variables with finite mean and variance.

Suppose that {g} are independent of A, O'A > 0, and define p = . Then if 7. - cc the normalized

random variable .' Z converges in distribution as follows. If limp = 0, then )V, converges to

a standard Gaussian random variable. If limp = oo, then Rf, then converges to A. Finally, if limp is

finite and non-zero, then XK converges to a mixture of the two limiting cases above.1

Lemma 3 is most easily shown by taking the limit of the characteristic function of R!. In the
matched-filter CDMA receiver, A is proportional to s, and A, p -+ cc. Therefore, the rormalized count
converges in distribution to the scaled conditional mean . as s - cc. This asymptotic result is more
commonly known as "perfect optical-to-electrical conversion". It is important to note that A is not a
Gaussian random variable, as it is composed of a finite number of bounded, mixed random variables. It
follows from Lemma 3 that the normalized count will not converge to a Gaussian random variable as
s - cc, in contrast to the case when A is deterministic. In fact, it will be shown in the numerical results
that the observed count A( is poorly approximated by asignal in additive Gaussian noise.

In Figure 4 we compare the exact minimum error rate of the CDMA matched-filter receiver
to those obtained with simplifying approximations. For these- calculations we have chosen the signature
sequences from the GF(11) prime codes, which have a length of 121 chips and a weight of 11 chips. We
have also assumed that the average number of thermoelectrons is much less than- the average number
of photoelectrons. As expected, the exact minimum error rate increases with the number of users, and
is a decreasing function of the single-user power. We see that the error rate curves seem to converge
to that predicted by Lemma 3 ts s increases. However, the asymptotic curve is a lower bound to the
exact error rate'by an order of magnitude for optical powers less than 10,000 photons per bit. Also
note that each exact error rate curve (constant a) approaches the asymptotic curve corresponding to
Gaussian-distributed MAI as the number of users, K, increases. This fact may also be justified by
Lemma 3. However, in this case both A. and 0,2 are proportional to (K - 1), and the limiting value of p
is finite. We conclude from Lemma 3 that the asymptotic distribution of A( for large K is a mixture of
the random variable A and an independent Gaussian random variable. In addition, A converges in law
to the Gaussian distribution by the central limit theorem-as the number of users increases. Therefore,
for fixed single-user power and-increasing number of users, R converges weakly to a Gaussian random
variable. This fact is illustrated in Figure 4, where the asymptotic error rate curve approaches the error
rate curve for the approximation of Gaussian-distributed MAI. However, we note that the error rate is
unacceptably high in the region in which the Gaussian-distributed MAI approximation is tight. It is
also evident from Figure 4 that, in general, the Gaussian-distributed MAI approximation yields a poorfestimate of the system performance-

Using the numerical results in Figure 4 we may also address the "error-free" condition, an
artifact of perfect optical-to-electrical conversion. Under this approximation, the observation is additively
composed of the desired user's energy and the MAI. Since the desired signal is on-off keying, the "error-
free" condition exists when the signal peak is greater than the maximum of the MAI. Since the prime
codes have a cross-correlation bound of 2, this condition occurs when the number of interferers is less
than half the weight of the sequences. Therefore, the "error-free" condition should occur for less than
6 users in Figure 4. The exact error rate curves in this figure indicate that "error-free" performance
is approximated for incident optical energies exceeding 10,000 photons per bit - the error rate for K=6
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Figure 4. Exact error rate curves vs. number of
users for various optical energies. All users have
equal signal energies Aso shown are the curves
corresponding to the high energy limit, and
Gaussian-ditriuted MAI.anper -to-ele l c

at this energy is roughly I0-14. At optical energies less than 0,000 photons per bit, the "error-free"
phenomenon is-not observed.

An important byproduct of this analysi is the optimal threshold function for the matched-
filter CDMA receiver. In Figure 5 we have plotted the optimal thresholds for those error rate curves

plotted in Figure 4. Each threshold function is normalized by the respective signal energy per bit. As the
incident optical energy per bit increases, the normalized optimal threshold increases to unity, which is
the curve corresponding to the asymptotically optimal test. Note that the combined approximations of
Gaussian-distributed MAI and perfect optical-to-electrical conversion yield a threshold that significantly

underestimat~es the exact optimal threshold for moderate and large received optical energies. For this

region the high-energy test (using the exact MAI distribution) yields a more accurate estimate of the
optimal threshold. This fact further illustrates that the observable is not well-modeled as a Gaussian

random variable for any optical power. Optimal thresholds for large incident optical energies are not
plotted for the "error-free" region because they could not be reliably determined due to the vanishing
error rate.

7. Conclusions

In this paper we have presented a semi-classical analysis of the error rate for a noncoherent,
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matched-filter CDMA receiver in the optical channel. The error rate expression is valid for a common

photomultiplier model, arbitrary signature sequences and equal energies among the users. In this paper

we also developed arbitrarily-tight bounds on the error rate for unequal energies. In the case when
the signal energies coincide, these bounding expressions are considerably easier to compute than the
exact error rate. The exact error rates and optimal thresholds were compared to those obtained through
var.... approximations for the special c0e of prie sequences and- unity ons phtrdiodcsand theaccuracyuof these approximations was addressed for various received optical and numbers of

machedfircyM eevri h pia hne.Teerrrt exp r iessoisvldfracm n

transmitters. It was demonstrated that the chip-synchronous approximation yielded minimum error
rates that upper-bounded the exact error rates, that the approximation of perfect optical-to-electrical

conversion was accurate only when the single-user optical energy per bit was much larger than 10000
photons per bit, and that the combined approximations of perfect optical-to-electrical conversion and
Gaussian-distributed MAI were appropriate only for numbers of transmitters that yielded unacceptable
error rates for a moderate number of chips per bit.
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